К отражаемым относятся цвета, которые сами не излучают, а используют белый свет, вычитая из него определенные цвета. Такие цвета называются субтрактивными ("вычитательными"), поскольку они остаются после вычитания основных аддитивных: полиграфическая краска голубого цвета поглощает красный и отражает синий и зеленый цвета.
Понятно, что в таком случае и основных субтрактивных цветов будет три, тем более, что они уже упоминались: голубой, пурпурный, желтый.
Перечисленные цвета составляют так называемую полиграфическую триаду (process colors). При печати эти цвета поглощают красную, зеленую и синюю составляющие белого света таким образом, что большая часть видимого цветового спектра может быть репродуцирована на бумаге. Каждому пикселу в CMYK-изображении присваиваются значения, определяющие процентное содержание триадных красок.
При смешениях двух субтрактивных составляющих результирующий цвет затемняется, а при смешении всех трех должен получиться черный цвет. При полном отсутствии краски остается белый цвет (белая бумага). Полное взаимодействие основных цветов модели CMYK представлено в табл. 17.1.
Таблица 17.1. Взаимодействие основных цветов модели CMYK
|
Сочетание пигментов |
Поглощаемые цвета |
Отражаемые цвета |
Итоговый цвет |
||
Одинарные краски |
Голубой |
Красный |
Зеленый и синий |
Голубой |
||
|
Пурпурный |
Зеленый |
Красный и синий |
Пурпурный |
||
|
Желтый |
Синий |
Красный и зеленый |
Желтый |
||
Бинарные сочетания |
Голубой и пурпурный |
Красный и зеленый |
Синий |
Синий |
||
красок |
Голубой и желтый |
Красный и синий |
Зеленый |
Зеленый |
||
|
Желтый и пурпурный |
Зеленый и синий |
Красный |
Красный |
||
Триадное сочетание красок |
Голубой, пурпурный и желтый |
Красный, зеленый и синий |
Нет |
(Черный) |
||
Отсутствие краски |
(белая бумага) |
Нет |
Красный, зеленый и синий |
Белый |
||
В итоге получается, что нулевые значения составляющих дают белый цвет, максимальные значения должны давать черный, их равные значения — оттенки серого, кроме того, имеются чистые субтрактивные цвета и их двоиные сочетания. Это означает, что модель, в которой они описываются, похожа на модель RGB.
Но проблема заключается в том, что данная модель описывает реальные полиграфические краски (впечатление множества цветов обеспечивается варьированием размеров точек, условно говоря, трех цветов, это примерно соответствует варьированию интенсивности свечения люминофоров на экране монитора), которые — увы! — далеко не так идеальны, как цветной луч света. Они имеют примеси, поэтому не могут полностью перекрыть весь цветовой диапазон (поскольку, с одной стороны, неполностью поглощают свою зону спектра, а с другой, частично захватывают излучение соседних зон спектра), а это приводит, в частности, к тому, что смешение трех основных красок, которое должно давать (согласно теоретической модели) черный цвет, дает какой-то неопределенный ("грязный") темный цвет, но это скорее темно-коричневый, чем истинно черный цвет.
Другим несоответствием реальных процессов и теоретической цветовой модели является утверждение, что равные значения цветовых компонентов дают нейтральный серый. На самом деле в полиграфии существует проблема, именуемая "баланс по серому" (невозможно создать нейтральный серый, используя равные площади голубой, пурпурной и желтой растровой точки). Суть проблемы баланса сводится к тому, чтобы добиться такого соотношения площадей растровых точек цветных красок, которое бы вызывало визуальное восприятие нейтрального цвета.
Для компенсации этих и других недостатков в число основных полиграфических красок была внесена черная краска (она позволяет получить чистый насыщенный черный цвет и нейтральные тона при использовании технологий UCR и GCR). Именно эта краска добавила последнюю букву в название модели CMYK, хотя и не совсем обычно. С — это Cyan (голубой), М — это Magenta (пурпурный), Y - Yellow (желтый), а (внимание!) К — это ЫасК (Черный), т. е. от слова взята не первая, а последняя буква. Хотя более вероятным представляется другая версия: буква К — это сокращение от слова Key ("ключевой", "основной", "контурный"). Черный цвет играет решающую роль в полиграфическом производстве (от него в значительной степени зависит общая резкость оттисков).
Если две вышеописанные модели представить в виде единой модели, получится усеченный вариант цветового круга, в котором цвета располагаются в известном еще со школы порядке: красный (R), желтый (Y), зеленый (G), голубой (С), синий (В).
На цветовом круге основные цвета моделей RGB и CMY находятся в такой зависимости: каждый цвет расположен напротив дополняющего его (комплементарного) цвета, при этом он находится между цветами, с помощью которых получен. Например, сложение зеленого и красного цветов дает желтый. Чтобы усилить какой-либо цвет, нужно ослабить дополняющий его цвет (расположенный напротив него на цветовом круге). Например, чтобы изменить общее цветовое решение в сторону голубых тонов, следует снизить в нем содержание красного цвета. На этом основаны принципы цветовой коррекции изображений.
О тоновой и цветовой коррекции см. часть VII.
По краю этого цветового круга располагаются так называемые спектральные цвета или цветовые тона (Hue), которые определяются длиной световой волны, отраженной от непрозрачного объекта или прошедшей через прозрачный объект. Цветовой тон характеризуется положением на цветовом круге и определяется величиной угла в диапазоне от 0 до 360 градусов. Эти цвета обладают максимальной насыщенностью, т. е. синий цвет синее быть уже не может. Таким образом, в данной цветовой модели выделяется 359 цветовых оттенков.
Насыщенность (Saturation) — это параметр цвета, определяющий его чистоту. Отсутствие (серых) примесей (чистота кривой) соответствует данному параметру. Уменьшение насыщенности цвета означает его разбеливание. Цвет с уменьшением насыщенности становится пастельным, блеклым, размытым. На модели все одинаково насыщенные цвета располагаются на концентрических окружностях, т. е. можно говорить об одинаковой насыщенности, например, зеленого и пурпурного цветов, и чем ближе к центру круга, тем все более разбеленные цвета получаются. В самом центре любой цвет максимально разбеливается, проще говоря, становится белым цветом.
Работу с насыщенностью можно характеризовать как добавление в спектральный цвет определенного процента белой краски. Чем больше в цвете содержание белого, тем ниже значение насыщенности, тем более блеклым он становится. Спектральные цвета с максимальной насыщенностью встречаются в естественной среде крайне редко, этим грешат скорее художники, несущие в среду обитания визуальную агрессию.
Яркость (Brightness) — это параметр цвета, определяющий освещенность или затемненность цвета. Амплитуда (высота) световой волны соответствует этому параметру. Уменьшение яркости цвета означает его зачернение. Работу с яркостью можно характеризовать как добавление в спектральный цвет определенного процента черной краски. Чем больше в цвете содержание черного, тем ниже яркость, тем более темным становится цвет.
В общем случае, любой цвет в модели HSB получается из спектрального цвета добавлением определенного процента белой и черной красок, т. е. фактически серой краски. Такая модель имеет название HSB — по первым буквам приведенных выше английских слов.
В этой модели — три координатных оси: первая ось — это линия окружности основания конуса, вторая ось — диаметр, соединяющий любую точку на окружности с центром, третья ось — высота конуса.
Данная модель уже гораздо ближе к традиционному пониманию работы с цветом. Можно определять сначала цветовой тон, а затем насыщенность и яркость.
Цветовая модель L*a*b была разработана Международной комиссией по освещению (Commission Internationale de 1'Eclairage — CIE) с целью преодоления существенных недостатков вышеизложенных моделей, в частности она призвана стать аппаратно независимой моделью и определять цвета без оглядки на особенности устройства (сканера, монитора, принтера, печатного станка и т. д.).
Множество цветов видны оттого, что излучается свет определенных длин волн. К излучаемым цветам можно отнести, например, белый свет, цвета на экране телевизора, монитора, кино, слайд-проектора и т. д. Цветов огромное количество, но из них выделено только три, которые считаются основными (первичными): это — красный, зеленый и синий.
Перечисленные цвета совпадают с теми цветами, которые упоминались при обсуждении основ физиологии зрения.
При смешении двух основных цветов результат осветляется: из смешения красного и зеленого получается желтый, из смешения зеленого и синего — голубой, синий и красный дают пурпурный. Если смешиваются все три цвета, образуется белый. Поэтому такие цвета называются аддитивными.
Модель, которую мы упоминали при обсуждении анализа и синтеза цвета, носит название модели RGB по первым буквам английских слов Red (Красный), Green (Зеленый) и Blue (Синий).
Информацию об анализе и синтезе цвета см. в главе 16.
Поскольку в модели используется три независимых значения, ее можно представить в виде трехмерной системы координат.
Каждая координата отражает вклад одной из составляющех в результирующий цвет в диапазоне от нуля до максимального значения (его численное значение в данный момент не играет роли, обычно это число 255, т. е. на каждой из осей откладывается уровень серого в каждом из цветовых каналов).
В результате получается некий куб, внутри которого и "находятся" все цвета, образуя цветовое пространство модели RGB. Любой цвет, который можно выразить в цифровом виде, входит в пределы этого пространства.
Объем такого куба (количество цифровых цветов) легко рассчитать: поскольку на каждой оси можно отложить 256 значений, то 256 в кубе (или 2 в двадцать четвертой степени) дает число 16 777 216.
Цвет может быть представлен в природе, на экране монитора, на бумаге. Во всех случаях возможный диапазон цветов, или цветовой охват (gamut), будет разным.
Самым широким он будет, естественно, в природе, в этом случае он ограничивается только возможностями нормального человеческого зрения (скажем, человек совсем не воспринимает инфракрасного излучения без специальных устройств).
Часть из того, что существует в природе, может передать монитор (на экране нельзя точно передать, например, чистые голубой и желтый цвета).
Часть из того, что передает монитор, можно напечатать (например, при полиграфическом исполнении совсем не передаются цвета, составляющие которых имеют очень низкую плотность).
Мы уже упоминали, что физически реализуемые цвета модели Lab используются для аддитивного синтеза других цветов. Это свойство позволяет представить цветовой охват устройства на схеме цветовой модели Lab.
Для этого необходимо пометить на схеме точки цвета, которые генерируют составляющие источники, например точки красного, зеленого и синего цветов конкретного цветного монитора, а затем соединить их прямыми линиями. В результате полученный треугольник (рис. 17.1) отразит только те цвета, которые в состоянии генерировать данное выводное устройство. Исходя из этого принципа, невозможно найти три таких аппаратно реализуемых цвета, которые бы образовали треугольник, вмещающий все видимые цвета.
Цветовые модели
Теоретические проблемы, затронутые в предыдущей главе, на данном историческом периоде решены в определенной степени тем, что в компьютерных технологиях используется несколько цветовых моделей, которые рассматриваются в данной главе.
Цветовая модель (или цветовое пространство) — это не более чем способ описания цвета с помощью количественных характеристик. В этом случае не только легко сравнивать отдельные цвета и их оттенки между собой, но и использовать их в цифровых технологиях.
В цветовой модели (пространстве) каждому цвету можно поставить в соответствие строго определенную точку. В этом случае цветовая модель — это просто упрощенное геометрическое представление, основанное на системе координатных осей и принятого масштаба.
Однако цвет, как сложное физическое и психофизиологическое явление, не укладывается в единственную и простую модель, поэтому в области цветове-дения создано множество моделей, исходя из разных практических требований. В цифровых технологиях используются, как минимум, четыре основных модели: RGB, CMYK, HSB в различных вариантах и Lab.
Для нужд полиграфии разработаны также многочисленные библиотеки плашечных цветов, расширяющих цветовые охваты стандартных полиграфических триадных систем.
В некоторых типах полиграфической продукции используются всего два-три цвета, которые печатаются смесовыми красками, которые называются плашеч-ными цветами (spot colors). В частности, к такой продукции относятся бланки, визитки, приглашения, прайс-листы и прочая акцидентная продукция.
Для осуществления печати такой продукции дизайнер должен представить в типографию отдельные полосы оригинал-макетов с плашками на каждый смесовый цвет и крестами приводки и приложить образцы цвета ("выкраски") для каждой полосы.
Для того чтобы унифицировать использование таких цветов ("выкраска" — дело субъективное), создают цветовые библиотеки.
В частности, известная фирма Pantone, которая является владельцем и разработчиком одноименной библиотеки, начиналась с того, что химик Ло-уренс Герберт создал совокупность различных цветов, составляемых из восьми красок, и напечатал альбом этих цветов, каждый из которых имел свой номер. С тех пор эта идея получила самое широкое развитие, цветовые библиотеки используются в самых разных областях и в первую очередь в компьютерной графике и полиграфии. Появилось множество других компаний, выпускающих другие стандартизированные библиотеки цветов (например, TRUMATCH SWATCHING SYSTEM, FOCOLTONE COLOUR SYSTEM, TOYO 88 ColorFinder1050 System и ANPA-COLOR system и т. д.).
Цветовой набор Process Color System Guide охватывает более 3000 цветов, получаемых при полиграфической печати, с рецептами процентного соотношения 16 базовых цветов для цветовой модели CMYK.
Pезюме
На этом собственно теоретическое введение в цифровые технологии графики (пиксельной и векторной) ц цвета завершается. В следующей части приводится практический материал, связанный с тоновой и цветовой коррекцией, которая рассматривается на примере наиболее популярной графической программы Adobe Photoshop.
Аппаратную зависимость других цветовых моделей можно сравнить, скажем, с зависимостью блюда от конкретного повара, хотя все используют один и тот же репепт приготовления. Невозможно утверждать, что если все станут придерживаться рецепта, то и вкус блюда окажется идентичным.
Цветовое пространство модели может быть условно представлено в виде схемы. Все цвета, расположенные внутри и на границе "подковы", являются физически реализуемыми.
Схему можно использовать для определения цветового охвата любого устройства, если известны параметры основных цветов, которые используются для синтеза результирующего цвета. Для этого достаточно на схеме определить точки основных цветов и соединить их прямыми линиями.
Что касается цветовых параметров, то в этой модели любой цвет определяется светлотой (L) и двумя хроматическими компонентами: параметром а, который изменяется в диапазоне от пурпурного (magenta) до зеленого (green), и параметром b, изменяющимся в диапазоне от желтого (yellow) до синего (blue).
В этой модели также трудно ориентироваться, как и в моделях RGB или CMYK, но об этой модели нужно иметь представление, поскольку многие программы используют ее в качестве модели-посредника при любом конвертировании из одной цветовой модели в другую. Кроме того, ее также можно использовать в следующих случаях: при печати на принтерах с
PostScript Level 2 и Level 3, при работе с форматом PhotoCD, при конвертировании цветного изображения в серую шкалу.
Таким образом, цветовая модель сочетает абстрактный характер модели HSB и реализуемость моделей RGB и CMYK.
В системе RGB используются источники составляющих, которые технически реализуются (например, цветные люминофоры и цветные фильтры для юпитеров), а в модели Lab — условные источники, которых не существует в природе, но такое научное допущение позволяет описывать все видимые человеком цвета, которые по-прежнему являются суммой положительных количеств красного, зеленого и синего компонентов. В результате математических ухищрений один из искусственных источников может быть исключен, а оставшиеся обозначаются символами х и у. Оси х и у представляют собой единичные векторы, разбиваемые на 10 (или 100) частей.
Цвета, которые находятся на линии, ограничивающей "подковку", обозначают спектральные цвета, получаемые в этой модели смешением составляющих х и у. Например, спектральный красный — это сочетание 0,7 по оси х и 0,25 по оси у.
Цвета, которые располагаются внутри "подковки", представляют собой физически реализуемые цвета, следовательно, каждый из них можно также применять для аддитивного синтеза других цветов. Кроме того, это позволяет графически обозначить цветовые охваты
Такой треугольник строится только для устройств с аддитивным синтезом, если цветное изображение создается иными средствами, например цветовой охват полиграфического триадного синтеза, то такой цветовой охват ограничивается более сложной геометрической фигурой, например для модели CMYK используется шестиугольник (рис. 17.2).