Безотходное потребление
Обычно проблемы экологии и ресурсосбережения связывают с деятельностью предприятий, упуская из виду, что различные ресурсы потребляются в быту. Объемы потребляемых населением материальных благ и ресурсов весьма значительны. Например, соотношение между потреблением и накоплением в национальном доходе составляет примерно 3/4 : 1/4. Следует также отметить тенденцию опережающего роста объемов отходов потребления по сравнению с отходами промышленности.
Пути перехода к «безотходному типу потребления» имеют свои особенности. Одна из них заключается в том, что отрасли, обслуживающие население, наименее «технологичны» в отношении безотходности. Помимо того, что материальные ценности в этих отраслях рассредоточены в соответствии со сложившейся системой расселения по территории всей страны, объемы образующихся отходов у конкретных потребителей весьма незначительны, а сами отходы очень разнородны и многокомпонентны. Положение осложняется тем, что сфера потребления в гораздо меньшей степени, чем сфера производства, поддается экономическому регулированию. Сфера потребления всегда ориентирована на конкретных людей, живущих в соответствии с многочисленными национальными традициями, особенностями регионов, уровнем культуры и т.д.
Таким образом, достижение рационального использования ресурсов в сфере потребления – сложная проблема и ее решение может быть достигнуто с помощью мер, условно разделяемых на две основные группы. Первая объединяет меры, предпринимаемые в отраслях общественного обслуживания (экономическое регулирование), вторая – меры воспитательного характера, направленные на выработку у каждого гражданина сознательного отношения к потребляемым ресурсам (регулирование воспитанием). На практике эти меры носят комплексный характер, взаимно дополняя друг друга. Внедрение новых технических решений, с помощью которых достигается экономия ресурсов, должно сопровождаться их пропагандой и созданием условий для широкого использования.
Например, одним из наиболее используемых ресурсов для бытовых нужд является питьевая вода.
Жилищно-коммунальное хозяйство наряду с промышленностью и сельским хозяйством – крупнейший потребитель воды. Специалисты подсчитали, что водопотребление в расчете на одного жителя, пользующегося водопроводом, составляет 200–240 л/с., а пользующегося, образно говоря, «ведром» – только 20–40 л. Чаще всего потери воды вызваны техническими неполадками, нарушениями эксплуатации водопроводов и т.д. Речь идет, в частности, о неисправностях оборудования, утечках воды из труб. Кроме того, много питьевой воды расходуется не по назначению, например, на полив зеленых насаждений, и т.д.
Для решения вопроса рационального водопользования необходимо наладить тщательный учет всей расходуемой воды и оперативно устранять технические неполадки в системах водо-обеспечения. О том, что возможности для этого есть, свидетельствуют значительные различия в уровне потребления воды между различными городами и регионами страны, а также достигнутым уровнем потребления воды в ряде развитых государств. Например, в Москве начиная с 1997 г. ведется работа по установлению водосчетчиков в многоквартирных домах наряду с введением в строй в 1994 г. станции «Роса», осуществляющей контроль водопроводной воды по 70 показателям 30 раз в сутки. Таким образом, для обеспечения рационального потребления воды необходим комплекс мер, объединяющий прогресс в области экономики, организации и техники, дополненный продуманной эффективной воспитательной работой.
Все это в полной мере относится и к потреблению других видов ресурсов, в частности, топливно-энергетических. Например, потребление электроэнергии на бытовые нужды в последнее время ежегодно увеличивается на 10%, в то же время опыт показывает, что такое увеличение не всегда оправдано. Одним из направлений экономии электрической энергии является массовый выпуск бытовой техники, обеспечивающей рациональное потребление электроэнергии. Например, замена парка бытовых холодильников на более экономичные модели (с усовершенствованной теплоизоляцией, автоматическим оттаиванием) позволила снизить потребление электроэнергии.
Переход на «зимнее» и «летнее» время, позволяющий лучше использовать «светлые» часы суток, в целом по народному хозяйству дает экономию около 3 млрд кВт-ч электроэнергии в год, на 3–4 млн кВт-ч снижает пиковые нагрузки энергосистем.
В принятой ООН «Всемирной стратегии охраны природы», в частности, записано: «Мы не унаследовали Землю наших отцов. Мы взяли ее в долг у наших детей». Поэтому именно принцип не брать «взаймы у потомков» должен стать определяющим при принятии всех без исключения решений по вопросам использования природных ресурсов.
Контрольные вопросы
1. В чем отличие техногенного круговорота веществ от биогеохимических круговоротов веществ в природе?
2. Отличается ли техногенный круговорот веществ в развитых и в развивающихся странах? Если да, то в чем это отличие?
3. Кем введены термины «безотходные технологии» и «малоотходные технологии»? Приведите аналоги этих терминов, принятые в англоязычных странах.
4. Какие основные принципы создания безотходных и малоотходных производств вам известны?
Безотходные и малоотходные производства
Термин «безотходная технология» впервые предложен российскими учеными Н.Н. Семеновым и И.В. Петряновым-Соколовым в 1972 г. В ряде стран Западной Европы вместо «мало- и безотходная технология» применяется термин «чистая или более чистая технология» («pure or more pure technology»).
В соответствии с решением ЕЭК. ООН и с Декларацией о малоотходной и безотходной технологиях и использовании отходов принята такая формулировка безотходной технологии (БОТ): «Безотходная технология есть практическое применение знаний, методов и средств с тем, чтобы в рамках потребностей человека обеспечить наиболее рациональное использование природных ресурсов и энергии и защитить окружающую среду» [21].
В литературе встречаются и другие термины, например, «безотходная технологическая система» (БТС). Под БТС понимается такое отдельное производство или совокупность производств, в результате практической деятельности которых не происходит отрицательного воздействия на окружающую среду. В определении безотходной технологии подразумевается не только производственный процесс. Это понятие затрагивает и конечную продукцию, которая должна характеризоваться:
· долгим сроком службы изделий,
· возможностью многократного использования,
· простотой ремонта,
· легкостью возвращения в производственный цикл или перевода в экологически безвредную форму после выхода из строя.
Теория безотходных технологических процессов в рамках основных законов природопользования базируется на двух предпосылках:
· исходные природные ресурсы должны добываться один раз для всех возможных продуктов, а не каждый раз для отдельных;
· создаваемые продукты после использования по прямому назначению должны относительно легко превращаться в исходные элементы нового производства.
Схема такого процесса – «спрос – готовый продукт – сырье». Но каждый этап этой схемы требует затрат энергии, производство которой связано с потреблением природных ресурсов вне замкнутой системы.
Вторым препятствием полной замкнутости процесса является износ материалов, их рассеивание в окружающей среде. Например, долгое, на протяжении многих столетий, использование таких металлов, как серебро, свинец, цинк, медь и др., и их рассеивание в процессе этого использования в ОС привели к тому, что сроки их исчерпания из земных недр составляют, согласно своду международных прогнозов «Мир в 2000 году», всего один-два десятка лет.
Понятие безотходной технологии условно. Под ним понимается теоретический предел или предельная модель производства, которая в большинстве случаев может быть реализована не в полной мере, а лишь частично (отсюда – малоотходная технология – МОТ). Но с развитием современных наукоемких технологий БОТ должна быть реализована все с большим приближением к идеальной модели.
Критики концепции безотходного производства утверждают, ссылаясь на второй закон термодинамики, что как энергию нельзя полностью перевести в работу, так и сырье невозможно полностью переработать в продукты производства и потребления. С этим нельзя согласиться, поскольку речь идет, прежде всего, о материи и о Земле как открытой системе, а материю – продукцию в соответствии с законом сохранения вещества и энергии всегда можно преобразовать снова в соответствующую продукцию. Примерами служат безотходно функционирующие природные экосистемы.
Имеется и другая крайность, когда все работы, связанные с охраной ОС от промышленных загрязнений, относят к БОТ и МОТ. Необходимо помнить, что оценка степени безотходности производства – очень сложная задача и единых критериев для всех отраслей промышленности нет.
В целом комплексный подход к оценке степени безотходности производства должен базироваться на:
· учете не столько безотходности, сколько степени использования природных ресурсов;
· оценке производства на основе самого обычного материального баланса, т. е. на отношении выхода конечной продукции к массе поступившего сырья и полуфабрикатов;
· определении степени безотходности по количеству отходов, образующихся на единицу продукции.
Для точного определения степени безотходности необходимо введение поправки на токсичность отходов. Невозможно сопоставлять только по массе, например, отходы содового производства и отработанные растворы гальванических цехов. Для сравнительного анализа различных технологических схем однотипных производств, выпускающих продукцию одного и того же вида, на стадии их проектирования вполне может быть использован поправочный коэффициент на токсичность отходов.
Для расчета энергетических затрат следует рассматривать энергоемкость продукции с учетом коэффициентов безотходности. Только в этом случае можно получить объективный показатель безотходности рассматриваемого производства. Масштабы загрязнения ОС при производстве электроэнергии на ТЭС часто таковы, что могут свести к минимуму те экологические преимущества, которые удается достичь при совершенствовании основного производства. Например, в цветной металлургии о степени безотходности судят по коэффициенту комплексности использования сырья (во многих случаях он превышает 80%). В угледобывающей промышленности предприятие считается безотходным (малоотходным), если этот коэффициент не превышает 75%.
Человек и биосфера
Давление человека на биосферу началось задолго до наступления этапа промышленной эволюции, ибо целые цивилизации погибли еще до нашей эры. Среди невозвратно погибших цивилизаций – Средиземноморская, цивилизация Майя, цивилизация острова Пасхи и др. Катастрофические экологические явления в прошлом были в основном связаны не с загрязнением природной среды, как сейчас, а с ее трансформациями. Главная из них – деградация почв, эрозия, засоление и т.д.
Вследствие антропогенной нагрузки на биосферу сегодня возникли новые экологические проблемы, которых не было в предыдущем XIX столетии [22, 27, 41]:
· началось потепление климата нашей планеты. В результате «парникового эффекта» температура поверхности Земли за последние 100 лет возросла на 0,5–0,6ºС. Источниками СО2, ответственными за большую часть парникового эффекта, являются процессы сжигания угля, нефти и газа и нарушение деятельности сообществ почвенных микроорганизмов тундры, потребляющих до 40% выбрасываемого в атмосферу СО2;
· значительно ускорился процесс подъема уровня Мирового океана. За последние 100 лет уровень моря поднялся на 10–12 см и сейчас этот процесс десятикратно ускорился. Это грозит затоплением обширных территорий, лежащих ниже уровня моря (Голландия, область Венеции, Санкт-Петербург, Бангладеш и др.);
· произошло истощение озонового слоя атмосферы Земли (озоносферы), задерживающего губительное для всего живого ультрафиолетовое излучение. Считается, что главный вклад в разрушение озоносферы вносят хлор-фтор-углероды (т. е. фреоны). Они используются в качестве хладоагентов и в баллончиках с аэрозолями. В 1996 г. была принята международная декларация, запрещающая использование наиболее опасных хлор-фтор-углеродов. При соблюдении условий декларации для полного восстановления озонового слоя потребуется не менее 100 лет и с начала XXI в. можно ожидать постепенный рост толщины «экрана» озоносферы;
· происходит интенсивное опустынивание и обезлесение планеты Земля.
Действие шума, ультра- и инфразвука, а также вибрации на организм человека
Эксплуатация современного промышленного оборудования и средств транспорта сопровождается значительным уровнем шума и вибрации, негативно влияющих на состояние здоровья работающих. С точки зрения безопасности труда шум и вибрация – одни из наиболее распространенных вредных производственных факторов на производстве, которые при определенных условиях могут выступать как опасные производственные факторы. Кроме шумового и вибрационного воздействия, вредное влияние на человека в процессе труда могут оказывать инфразвуковые и ультразвуковые колебания.
Рассмотрим основные физические характеристики шума, вибрации, ультра- и инфразвука.
Шум – это сочетание звуков различной частоты и интенсивности. С физиологической точки зрения шумом называют любой нежелательный звук, оказывающий вредное воздействие на организм человека.
Звуковые колебания, воспринимаемые органами слуха человека, являются механическими колебаниями, распространяющимися в упругой среде (твердой, жидкой или газообразной).
Основным признаком механических колебаний является повторность процесса движения через определенный промежуток времени. Минимальный интервал времени, через который происходит повторение движения тела, называют периодом колебаний (Т), а обратную ему величину – частотой колебаний (f). Эти величины связаны между собой простым соотношением:
(17.1)где f
– частота колебаний в герцах (Гц);
Т – период колебаний в секундах, с.
Таким образом, частота колебаний определяет число колебаний, произошедших за 1 секунду. Единица измерения частоты – герц (Гц), 1 Гц=1 с-1.
Для характеристики колебаний используют также циклическую частоту (?, с-1), которая определяется как число колебаний, происходящих за 2? секунд. Между обычной и циклической частотами существует следующая связь:
(17.2)Циклическая частота и период колебаний связаны следующим соотношением:
(17.3)Одним из наиболее частых видов колебаний, существующих в природе, являются гармонические колебания (рис. 17.1), описываемые уравнением:
(17.4)
где х – смещение тела от положения равновесия;
? – циклическая частота колебаний;
t – время.
Максимальное значение смещения от положения равновесия (xm) называется амплитудой колебания. Величина, стоящая под знаком косинуса, называется фазой гармонического колебания:
. (17.5)
Фаза колебаний начальный момент времени t = 0 называется начальной фазой. Фаза колебания характеризуется величиной и направлением отклонения колебания от положения равновесия в зависимости от времени.
Колебания в упругой среде не ограничиваются центром возбуждения этих колебаний. Колеблющиеся частицы среды передают свою энергию соседним частицам. Процесс распространения колебаний в упругой среде называется волной. Каждая из частиц среды при этом колеблется около положения устойчивого равновесия. Поверхность, которая отделяет колеблющиеся частицы от частиц, пока еще не пришедших в колебательное движение, называют фронтом волны. Совокупность точек, колеблющихся в одинаковых фазах, образует волновую поверхность. Все точки фронта волны имеют нулевую фазу. Отсюда следует, что фронт волны представляет собой одну из волновых поверхностей. Фронт волны расположен перпендикулярно к направлению распространения волны. По форме фронта волны различают плоские и сферические (рис. 17.2). Расстояние между двумя соседними частицами, находящимися в одинаковом режиме движения или в одинаковой фазе, называется длиной волны X. На рис. 17.1 представлено графическое изображение гармонических колебаний и также показана длина волны.
Рис. 17.2. Виды волн: а) плоская; б) сферическая
Источник звуковых колебаний, возбуждающий плоские волны, представляет собой плоскую поверхность, размер которой существенно больше длины волны. Фронты этих волн расположены параллельно плоскости возбуждения.
Сферическая волна
создается маленьким по сравнению с длиной волны возбудителем колебаний – точечным источником звуковых колебаний. При очень большом (бесконечном) удалении источника звуковых колебаний сферические волны могут частично становиться плоскими.
Тип распространяющейся в звукопроводящем материале волны зависит от его вида и размеров, а также от длины волны. Рассмотрим важный с практической точки зрения случай распространения звуковых волн в неограниченных средах, размеры которых значительно больше длины волны. В этих средах распространяются продольные и поперечные волны. В продольной волне меняются местами зоны сжатия (области с повышенным давлением) и зоны растяжения (области с пониженным давлением). Поэтому другое название этих волн – волны сжатия (волны давления). Для этих волн направление колебания частиц совпадает с направлением распространения волны. В природе такой тип волн распространяется в твердых, жидких и газообразных средах, например слышимый звук в воздухе.
Для поперечных волн направление колебания частиц перпендикулярно направлению распространения волны. Эти волны также носят название сдвиговых волн, так как вызывают в звукопроводящем материале сдвиг. Они могут распространяться только в твердой среде.
Скорость V
распространения колебаний в пространстве называется скоростью волны. Связь между длиной волны ?,
скоростью волны V и периодом колебания T
дается выражением:
?=VT, (17.6)
откуда V= (17.7)
Учитывая, что частота колебания связана с периодом соотношением (17.1), скорость волны можно выразить через частоту:
V=?f.
Скорость распространения звуковых волн в газообразной среде (идеальный газ) определяется выражением:
(17.8)
где Х – показатель адиабаты (постоянная величина, для воздуха равная 1,41);
Р –
давление газа;
? – плотность газа.
По современным измерениям скорость звука в воздухе при нормальных условиях равна 331 м/с. В табл. 17.1 приведены скорости распространения звуковых волн в различных веществах при комнатной температуре.
Звуковые волны переносят энергию. Для характеристики среднего потока энергии в какой-либо точке среды вводят понятие интенсивности звука – это количество энергии, переносимое звуковой волной за единицу времени через единицу площади поверхности, нормальной (расположенной под углом 90°) к направлению распространения волны.
Интенсивность звука выражается следующим образом:
(17.9)
где I
– интенсивность звука, Вт/м2;
Р – звуковое давление ( разность между мгновенным значением полного давления и средним значением давления, которое наблюдается в среде при отсутствии звукового поля). Па;
? – плотность среды, кг/м3;
С – скорость звука в среде, м/с.
Сила воздействия звуковой волны на барабанную перепонку человеческого уха и вызываемое ею ощущение громкости зависят от звукового давления. Звуковое давление – это дополнительное давление, возникающее в газе или жидкости при нахождении там звуковой волны.
В природе величины звукового давления и интенсивности звука, генерируемые различными источниками шума, меняются в широких пределах: по давлению – до 108 раз, а по интенсивности – до 1016 раз. В соответствии с законом Вебера – Фехнера прирост силы ощущения анализатора человека, в том числе и слухового, пропорционален логарифму отношения энергий двух сравниваемых раздражений. Поэтому для характеристики уровня шума используют не непосредственно значения интенсивности звука и звукового давления, которыми неудобно оперировать, а их логарифмические значения, называемые уровнем интенсивности звука или уровнем звукового давления.
Уровень интенсивности звука
определяют по формуле:
L1= (17.10)
где L1 –
уровень интенсивности в децибелах (дБ);
I – интенсивность звука, Вт/м2;
I0 – интенсивность звука, соответствующая порогу слышимости человеческого уха (I0 – постоянная величина; I0 = 10-12
Вт/м2 на частоте 1000 Гц).
Человеческое ухо, а также многие акустические приборы реагируют не на интенсивность звука, а на звуковое давление, уровень которого определяется по формуле:
(17.11)
где Р – звуковое давление. Па;
P0 – пороговое звуковое давление (P0
– постоянная величина, P0
= 2•10-5 Па на частоте 1000 Гц).
Связь между уровнем интенсивности и уровнем звукового давления определяется следующим выражением:
L1= (17.12)
где ?0 и С0 – соответственно плотность среды и скорость звука при нормальных атмосферных условиях, т. е. при t = 20 ºС и P0 = 105 Па;
? и С – плотность среды и скорость звука в условиях измерения.
При распространении звука в нормальных атмосферных условиях LI= Lp. При расчетах уровня шума используют величину интенсивности звука, а для оценки воздействия шума на человека – уровень звукового давления.
Человеческое ухо воспринимает как слышимые колебания, лежащие в пределах от 20 до 20 000 гц. Звуковой диапазон принято подразделять на низкочастотный (20–400 гц), среднечастотный (400–1000 гц) и высокочастотный (свыше 1000 гц). Звуковые волны с частотой менее 20 гц называются инфразвуковыми, а с частотами более 20 000 гц – ультразвуковыми. Инфразвуковые и ультразвуковые колебания органами слуха человека не воспринимаются.
Ультразвуковой диапазон частот делится на два поддиапазона – низкочастотный (20–100 кГц) и высокочастотный (100 кГц– 1000 МГц). Ультразвуки весьма сильно поглощаются газами и во много раз слабее – жидкостями. Так, например, коэффициент поглощения ультразвука в воздухе приблизительно в 1000 раз больше, чем в воде. Ультразвуки применяются в промышленности для контрольно-измерительных целей (дефектоскопия, измерение толщины стенок трубопроводов и др.), а также для осуществления и интенсификации различных технологических процессов (очистка деталей, сварка, пайка, дробление и т.д.). Ультразвуки ускоряют протекание процессов диффузии, растворения и химических реакций.
Инфразвук – это область акустических колебаний в диапазоне ниже 20 Гц. В производственных условиях инфразвук, как правило, сочетается с низкочастотным шумом, а в ряде случаев и с низкочастотной вибрацией. Источниками инфразвука в промышленности являются компрессоры, дизельные двигатели, вентиляторы, реактивные двигатели, транспортные средства и др.
Характеристиками ультразвуковых и инфразвуковых колебаний, как и в случае звуковых волн, являются уровень интенсивности (Вт/м2), уровень звукового давления (Па) и частота (Гц).
Рассмотрим, как действуют шум, ультра- и инфразвук, а также вибрация на организм человека.
Звуки очень большой силы, уровень которых превышает 120-130 дБ, вызывают болевое ощущение и повреждения в слуховом аппарате (акустическая травма). В табл. 17.2 представлены уровни различных звуков.
Разрыв барабанных перепонок в органах слуха человека происходит под воздействием шума, уровень звукового давления которого составляет ? 186дБ. Воздействие на организм человека шума, уровень которого около 196 дБ, приведет к повреждению легочной ткани (порог легочного повреждения).
Однако не только сильные шумы, приводящие к мгновенной глухоте или повреждению органов слуха человека, вредно отражаются на здоровье и работоспособности людей. Шумы небольшой интенсивности, порядка 50–60дБА1, негативно воздействуют на нервную систему человека, вызывают бессонницу, неспособность сосредоточиться, что ведет к снижению производительности труда и повышает вероятность возникновения несчастных случаев на производстве. Если шум постоянно действует на человека в процессе труда, то могут возникнуть различные психические нарушения, сердечно-сосудистые, желудочно-кишечные и кожные заболевания, тугоухость.
1 В дБА выражается уровень шума, замеренный по шкале А шумомера, конструкция и принцип работы которого изложены далее.
Последствия воздействия шума небольшой интенсивности на организм человека зависят от ряда факторов, в том числе возраста и состояния здоровья работающего, вида трудовой деятельности, психологического и физического состояния человека в момент действия шума и ряда других факторов. Шум, производимый самим человеком, обычно не беспокоит его. В отличие от этого посторонние шумы часто вызывают сильный раздражающий эффект. Если сравнивать шумы с одинаковым уровнем звукового давления, то высокочастотные шумы (f > 1000 Гц) более неприятны для человека, чем низкочастотные (f < 400 Гц). В ночное время шум с уровнем 30–40 дБА является серьезным беспокоящим фактором.
При постоянном воздействии шума на организм человека могут возникнуть патологические изменения, называемые шумовой болезнью, которая является профессиональным заболеванием.
Инфразвук также оказывает негативное влияние на органы слуха, вызывая утомление, чувство страха, головные боли и головокружения, а также снижает остроту зрения. Особенно неблагоприятно воздействие на организм человека инфразвуковых колебаний с частотой 4–12 Гц.
Вредное воздействие ультразвука на организм человека выражается в нарушении деятельности нервной системы, снижении болевой чувствительности, изменении сосудистого давления, а также состава и свойств крови. Ультразвук передается либо через воздушную среду, либо контактным путем через жидкую и твердую среду (действие на руки работающих). Контактный путь передачи ультразвука наиболее опасен для организма человека.
Рассмотрим воздействие вибрации на организм человека. Вибрация - это совокупность механических колебаний, простейшим видом которых являются гармонические. В ГОСТе 24346-80 «Вибрация. Термины и определения» вибрация определяется как движение точки или механической системы, при котором происходит поочередное возрастание и убывание во времени значений по крайней мере одной координаты. Вибрацию вызывают неуравновешенные силовые воздействия, возникающие при работе различных машин и механизмов. Примером таких устройств могут служить ручные перфораторы, кривошипно-шатунные механизмы и другие, детали которых совершают возвратно-поступательные движения. Вибрацию также создают неуравновешенные вращающиеся механизмы (электродрели, ручные шлифовальные машины, металлообрабатывающие станки, вентиляторы и т.д.), а также устройства, в которых движущиеся детали совершают ударные воздействия (зубчатые передачи, подшипники и т.д.). В промышленности также используются специальные вибрационные установки, в частности, при уплотнении бетонных смесей, при дроблении, измельчении и сортировке сыпучих материалов, при разгрузке транспортных средств и в ряде других случаев.
Если вибрирующая система совершает гармонические колебания (17.2), то для ее описания используют следующие характеристики:
§ амплитуду виброперемещения, т. е. наибольшее отклонение колеблющейся точки от положения равновесия, Хт, м;
§ колебательную скорость, или виброскорость, am, м/с;
§ ускорение колебаний, или виброускорение, Vm, м/с2;
§ период колебаний, Т, с;
§ частоту колебаний, f, гц.
Если вибрации имеют несинусоидальный характер, то их можно представить в виде суммы синусоидальных (гармонических) составляющих с помощью разложения в ряд Фурье.
Значения виброскорости и виброускорения для различных источников изменяются в очень широких пределах, поэтому, как и для шума, удобнее пользоваться их логарифмическими характеристиками. Так, логарифмический уровень виброскорости (или просто уровень виброскорости) определяется по формуле:
(17.13)
где Lv –
уровень виброскорости, дБ;
V –
колебательная скорость, м/с;
V0 – пороговое значение колебательной скорости, стандартизованное в международном
масштабе (V0 = 5•10-8
м/с).
По аналогии логарифмический уровень виброускорения может быть определен следующим образом:
, (17.14)
где La –
уровень виброускорения, дБ;
а –
ускорение колебаний, м/с2;
а0 – пороговое значение ускорения колебаний, стандартизованное в международном
масштабе (а0 = 3 • 10-4 м2
/с).
Необходимо различать общую и местную вибрации. Общая вибрация действует на весь организм в целом, а местная – только на отдельные части его (верхние конечности, плечевой пояс, сосуды сердца).
При воздействии общей вибрации наблюдаются нарушение сердечной деятельности, расстройство нервной системы, спазмы
сосудов, изменения в суставах, приводящие к ограничению подвижности. Если частоты колебания рабочих мест совпадают с собственными частотами колебаний внутренних органов человека1
(явление резонанса), то возможно механическое повреждение данных органов вплоть до разрыва.
1 Для большинства внутренних органов человека частоты собственных колебаний составляют 6–9 Гц.
При действии на руки работающих местной вибрации (вибрирующий инструмент) происходит нарушение чувствительности кожи, окостенение сухожилий, потеря упругости кровеносных сосудов и чувствительности нервных волокон, отложение солей в суставах кистей рук и пальцев и другие негативные явления. Длительное воздействие вибрации приводит к профессиональному заболеванию – вибрационной болезни, эффективное лечение которой возможно лишь на начальной стадии ее развития.
Рассмотрим теперь вопросы, связанные с нормированием шума, инфра- и ультразвука, вибрации.
Шум нормируется на рабочих местах согласно ГОСТу 12.1.003-83 и СН № 3223-85 «Санитарные нормы допустимых уровней шума на рабочих местах». В указанных нормативных документах предусмотрены два метода нормирования шума: по предельному спектру шума и по интегральному показателю – эквивалентному уровню шума в дБА. Выбор метода нормирования в первую очередь зависит от временных характеристик шума. По этим характеристикам все шумы подразделяются на постоянные, уровень звука которых за 8-часовой рабочий день изменяется не более чем на 5 дБА, и непостоянные, аналогичная характеристика которых изменяется за рабочий день более чем на 5 дБА.
Нормирование по предельному спектру шума является основным для постоянных шумов. Предельный спектр шума –
это совокупность нормативных значений звукового давления на следующих стандартных среднегеометрических частотах: 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц. В табл. 17.3 представлены допустимые уровни шума на различных рабочих местах.
Сокращенно предельные спектры шума обозначаются ПС (предельный спектр) с указанием допустимого уровня звукового давления на частоте 1000 Гц, например: ПС-45, ПС-55, ПС-75 и др. Постоянный шум на рабочих местах не должен превышать нормированных уровней, представленных в ГОСТе 12.003-83.
Существует и другой метод нормирования шума, устанавливающий предельно допустимые уровни как постоянного, так и непостоянного шума. Он основан на измерении шума по стандартной шкале А шумомера1. Эта шкала имитирует частотную чувствительность человеческого уха. Уровень шума, измеренный по шкале А шумомера, обозначается дБА. Постоянные шумы предпочтительно характеризовать по предельному спектру шума, а непостоянные – только в дБА.
1 Как следует из названия, шумомером называют прибор для измерения шума. Устройство этого прибора описано в §17.2.
Рассмотрим, как определяются предельные значения инфразвука. Чаще всего в условиях производства инфразвук сочетается с низкочастотным шумом и вибрацией. Как и в случае шума, инфразвук измеряется шумомерами.
Инфразвук подразделяется на постоянный, уровень звукового давления которого, измеренного по стандартной шкале «линейная» шумомера, изменяется не более чем на 10 дБ за время наблюдения 1 мин, и непостоянный, аналогичная характеристика которого изменяется не менее чем на 10 дБ за тот же период наблюдения. Для постоянного инфразвука нормируется уровень звукового давления на частотах 2, 4, 8, 16 и 31,5 Гц, а для непостоянного – общий уровень звукового давления по стандартной шкале «линейная» шумомера, дБ. Предельно допустимые уровни инфразвука, установленные «Гигиеническими нормами инфразвука на рабочих местах», показаны в табл. 17.4.
Допустимый уровень ультразвука нормируется в соответствии с ГОСТом 12.1.003-83 и Санитарными нормами № 2282-801. Весь ультразвуковой диапазон частот принято подразделять на низкочастотный с частотой колебаний до 100 кГц и высокочастотный (от 100 до 1 000 000 кГц). Низкочастотные колебания распространяются как воздушным, так и контактным путем, а высокочастотные – только контактным. Для низкочастотных ультразвуковых колебаний в соответствии с названными выше нормативными документами установлены следующие предельные значения звукового давления на рабочих местах:
1 Полные названия этих нормативных документов: ГОСТ 12.1.003-83 «ССБТ.
Ультразвук. Общие требования безопасности» и СН № 2282-80 «Санитарные нормы и правила при работе с оборудованием, создающим ультразвук, передаваемый локальным путем на руки работающих».
Среднегеометрическая частота, Гц 12,5 16,0 20,0 25,0 31,5-100,0 |
Уровень звукового давления, дБ 80 90 100 105 110 |
Как уже сказано выше, различают общую вибрацию, передающуюся через опорные поверхности на тело сидящего или стоящего человека, и локальную (местную), передающуюся через руки человека.
В зависимости от источника возникновения выделяют три категории вибрации:
§ транспортная;
§ транспортно-технологическая;
§ технологическая.
Вибрацию нормируют в соответствии с ГОСТом 12.1.012-78 «ССБТ. Вибрация. Общие требования безопасности», а также в соответствии с СН № 3044-84 «Санитарные нормы вибрации рабочих мест» (общая вибрация) и СН № 3041-84 «Санитарные нормы и правила при работе с машинами и оборудованием, создающими локальную вибрацию, передающуюся на руки работающих».
Для каждой из трех категорий вибрации нормируют величины виброскорости и виброускорения как в линейных единицах (м/с и м/с2), так и в логарифмических (дБ) в зависимости от частоты вибрации. Общая вибрация нормируется в диапазоне частот 0,8–80 Гц, а местная (локальная) – в диапазоне частот 8–1000 Гц. Обычно вибрация включает как горизонтальную, так и вертикальную составляющие, поэтому при ее нормировании учитывают направление действия вибрации. При этом используют следующие обозначения: Z – вертикальная ось, а Х и Y – горизонтальные оси. В табл. 17.5 и 17.6 представлены примеры нормирования как общей, так и локальной вибрации.
Динамика популяций
В современной экологии часто возникает вопрос: как определить численность той или иной популяции через определенное время? Ответ на него не только представляет теоретический, интерес, но и имеет большое практическое значение. Действительно, не зная этого, нельзя правильно планировать эксплуатацию различных возобновляемых природных ресурсов – промысловых рыб, охотничьих угодий и т.п. Может ли в решении этого вопроса помочь математика? Оказывается, да. Рассмотрим здесь некоторые простейшие модели, на которых проиллюстрируем подход к данному вопросу.
Пусть некоторая популяция имеет в момент времени t0 биомассу x0. Предположим, что в каждый момент времени скорость увеличения биомассы пропорциональна уже имеющейся биомассе, а возникающие явления конкуренции за источниками питания и самоотравления снижают биомассу пропорционально квадрату наличной биомассы. Если обозначить биомассу в момент времени t через х(t), а изменение ее за время
t через х, то можно записать следующее приближенное равенство: х?(kх-?х2) t, (9.1)где ? и k – положительные постоянные (параметры).
В дифференциальной форме это соотношение имеет вид:
. (9.2)Оно и представляет собой математическую модель процесса изменения биомассы популяций. В экологической литературе уравнение (9.2) часто называют логистическим.
Если теперь поставить вопрос о том, какова же будет биомасса в момент времени Т, то на него можно ответить экспериментально – дождаться этого момента и определить биомассу непосредственным измерением (вообще говоря, такое измерение может быть физически неосуществимым).
Другой путь – воспользоваться математической моделью, решая задачу Коши для уравнения (9.2) с начальным условием (9.3):
x(t0)=x0. (9.3)
Разделяя в уравнении (9.2) переменные, получим уравнение в дифференциалах
. (9.4)Для дальнейшего удобно ввести новую переменную
z=?х, (9.5)
тогда (9.4) можно переписать в виде
(9.6)
Возвращаясь к исходному уравнению (9.2), заметим, что если x0= (т. е. z0=k), то задача Коши имеет решение x(t)x0 (рис. 9.1). Если x0 <, то уравнение (9.6) интегрируется следующим образом
ln z – ln(k-z)=ln z0- ln (k-z0)+k(t-t0),
откуда
, (9.7)
значит,
, t > 0 (9.8)
Если x0
> , то аналогично предыдущему случаю снова получаем формулу (9.8). Дифференцируя (9.8) по t, имеем
, (9.9)
откуда вытекает, что при x0
< график функции х(t)
монотонно возрастает, а при x0> – монотонно убывает, причем оба графика имеют горизонтальную асимптоту х= (рис. 9.1). Мы не приводим здесь элементарную, но громоздкую формулу второй производной d2x/dt2, показывающую, что верхний и нижний графики имеют по одной точке перегиба.
Мы рассмотрели весьма упрощенную ситуацию, так как предполагали, что популяция не взаимодействует ни с какими другими популяциями, учет же этого обстоятельства, конечно, значительно усложняет модель.
Рассмотрим одну из таких моделей. Будем обозначать биомассы двух популяций через х и у соответственно. Предположим, что обе популяции потребляют один и тот же корм, количество которого ограничено, и из-за этого находятся в конкурентной борьбе друг с другом.
Французский математик В. Вольтерра в 1926 г. показал, что при таком предположении динамика популяций достаточно хорошо описывается следующей системой дифференциальных уравнений:
, (9.10)
где –
определенные положительные числа.
Первые члены правых частей системы (9.10) характеризуют скорость роста популяций при отсутствии ограничивающих факторов. Вторые члены учитывают те изменения в скоростях, которые вызываются ограниченностью корма.
Задавая различные значения параметров, с помощью системы (9.10) можно описать взаимодействие двух популяций, одна из которых – хищник, а другая – жертва [36]. В литературе [47] более подробно описаны математические аспекты исследования системы (9.10).
Прежде чем исследовать, как будет вести себя система (9.10), заметим, что в любой момент времени t ее состояние полностью описывается значениями х и у:
каждому состоянию системы соответствует некоторая точка (х, у) на плоскости хОу, называемой «фазовой плоскостью». Каждой точке фазовой плоскости можно поставить в соответствие вектор (стрелку на рис. 9.2) с координатами, которые являются правыми частями системы, указывающий направление движения в этой точке. Проведя из начальной точки линии, касательные этим векторам, получим траектории, по которым будет происходить движение системы, т. е. решения задачи Коши для системы (9.10) с начальными условиями
x(t0)=x0, y(t0)=y0, (х0,у0)Î
х0у. (9.11)
Чтобы составить представление о траекториях движения системы, построим линии, на которых х=0 (здесь векторы параллельны оси Оу) и у
= 0 (здесь векторы параллельны оси Ох). Для
краткости обозначим производную – через х, а – через у. Имеем
х=0,
когда ,
у=0,
когда ,
т. е. х = 0 на двух прямых в фазовой плоскости:
х=0 и =,
а у=0 также на двух прямых:
у=0
и = (рис. 9.2, 9.3).
По этим рисункам можно сделать следующие выводы. В обоих случаях имеем три стационарные точки, в которых одновременно х=0 и у=0, а именно: (0,0), (0, ) и (0, ), которые по известной классификации являются узлами. При этом, если > (рис. 9.2), то устойчивым является только узел (, 0), а если < (рис. 9.3), то узел (0, ). Таким образом, если > , то вторая популяция вымирает, y(t) > 0, t > , а первая стабилизируется, x(t) >, t >. Если же < , то имеем обратную картину: первая популяция вымирает, x(t) > 0, t>, а вторая стабилизируется, x(t) >, t>. Наконец, если ==, то кроме неустойчивого узла (0,0) имеем линию стационарных точек – отрезок прямой = (рис. 9.3).
В дальнейших рассмотрениях будем для простоты считать, что k1=k2=k и ?1= ?2= ?. Тогда, деля второе уравнение системы (9.10) на первое, получим =,
откуда
, (9.12)
т. е. траекториями являются отрезки прямых, выходящих из начала координат (рис. 9.4). Обе популяции не вымирают и численность их стабилизируется к значениям, которые можно найти как координаты пересечения прямых = и y = , откуда
(9.13)
Формирование механизмов природопользования в рыночной экономике
Экономические соображения остаются главным препятствием для любого рода разумного планирования с целью долговременного использования ОС. Известный американский эколог Ю. Одум считает, что эта проблема возникает из-за резкого несовпадения рыночных и нерыночных ценностей [27]. Независимо от политической системы в разных странах промышленные товары и услуги, такие, как автомобили или электроэнергия, оцениваются очень высоко, тогда как не менее важные для жизни блага и услуги природного происхождения вроде очистки воды и воздуха и их возобновления остаются обычно вне экономической системы и обладают очень низкой денежной стоимостью или не обладают ею вовсе (следовательно, соответствуют «нерыночным» ценностям). «Экономисты не приучены думать о роли биологических систем в экономике, еще меньше они думают о состоянии этих систем. Стол экономиста может быть завален ссылками на последние данные о состоянии здоровья экономики, но экономист на самом деле редко бывает озабочен состоянием здоровья главных биологических систем Земли. Отсутствие экологической осведомленности вносит свой вклад в недостатки экономического анализа и формирование политики» [27].
Большинство экономистов придерживаются мнения, что рынок начинает давать сбои, когда он сталкивается с распределением многих природных ресурсов. Несостоятельность рынка определяется как неспособность ценовой системы поддерживать желательную активность и приостанавливать нежелательную.
Проведенный через конгресс США Национальный акт об охране ОС стал первой попыткой подвести в национальном масштабе правовую основу под распространение системы ценностей на природную среду. Акт требует, чтобы при каждом планируемом антропогенном нарушении составлялся официальный отчет об ущербе. Это должно привести к улучшению процедуры установления общей оценки, включающей оценки затрат и прибылей для природных и общественных событий.
Очень важно классифицировать ценности на рыночные и нерыночные. К рыночным ценностям относятся в основном производимые товары и услуги.
На рынке свободного предпринимательства они распределяются по законам спроса и предложения посредством неограниченной конкуренции. В теории рыночная стоимость отражает общественную оценку товара и услуг, что приводит к эффективному распределению ресурсов. На практике это не всегда так, поэтому допускается необходимость некоторого регулирования со стороны государства.
Нерыночные ценности –
это главным образом товары и услуги природы, их иногда называют «свободными» или «общими», или «общественными» товарами и услугами. Обычно эти «бесплатные» ценности существуют вне рыночной экономики. Нерыночные ценности поделены на две категории: характеризуемые и нехарактеризуемые.
По мнению большинства экономистов, характеризуемым
нерыночным ценностям можно приписать денежную стоимость на языке рыночной экономики. Например, стоимость изъятия природной среды можно было бы определить исходя из того, что стоило бы обеспечение искусственной замены бесплатных благ и услуг (например, переработки отходов), предлагаемых природной экосистемой. Так можно было бы определить ценность реки для ассимиляции отходов.
Нехарактеризуемые
ценности не могут быть включены в обычный в экономике расчет стоимости. Они представляют ценность для жизнеобеспечения природных систем. Леса, степи, реки, озера и океаны осуществляют, смягчают и стабилизируют атмосферные и гидрологические циклы и круговороты минеральных элементов. К этой же категории относится присущая биологическим видам ценность, ценность туземной культуры, красоты природы и множество эстетических ценностей, которые со временем получают признание людей. Нехарактеризуемые категории являются личными и общественными ценностями, а не частными рыночными, с которыми они очень часто приходят в конфликт.
Одним из первых экономистов, бросивших вызов свободному рынку как средству эффективного распределения ресурсов, был английский экономист А.С. Пигу [27]. Он заострил внимание на недостатках рынка, которые проявляют себя, если бизнес преследует только свои интересы, не заботясь об общественных.
Он писал, что только государство может установить обязательные правила и использовать их для защиты воздуха и воды от опасности загрязнения.
Неокрепшие рыночные отношения в России создают новую угрозу для состояния ОС и рационального природопользования. Именно в этих условиях рационально внедрение системы экологического регулирования природопользования. Создание экономического механизма платного природопользования в переходный период формирования рыночных отношений предусматривает: плату за природные ресурсы, выдачу предприятиям лицензий на природопользование, плату за загрязнения, формирование экологических фондов за счет средств оплаты за выбросы, штрафных платежей и т.д. Формирование экономического механизма природопользования в условиях перехода к рынку будет происходить в том числе в направлении социально-экономической оценки ресурсного потенциала природы и экологического состояния территорий. Кроме того, большая роль отводится, в частности, кредитно-финансовому механизму природопользования.
Вопрос о разработке систем оценки стоимости элементарных единиц биосферы остается актуальным особенно для стран с переходной экономикой, к которым принадлежит и современная Россия.
Такие оценки должны отвечать на вопрос: какие затраты должно будет понести общество для того, чтобы восполнить потери в регуляторной функции биосферы, связанные с деградацией экосистем, обусловленной его деятельностью.
Существующие методики расчета стоимости территории и ущерба не позволяют подобным образом подойти к оценке стоимости. Более того, опыт группы под руководством отечественного эколога В.Н. Большакова по разработке оценок воздействия на ОС свидетельствует о том, что рассчитанные по этим методикам ущербы возобновимым ресурсам по своим размерам не сопоставимы с прибылью, которую можно получить при разработке нефтяных или газовых месторождений [3].
В работах экономистов при оценке возобновимых ресурсов используется так называемый ресурсный подход. Это означает, что живые компоненты экосистем получают стоимостную оценку только в том случае, если они вовлечены в процесс общественного производства, являются необходимыми для повседневной жизни общества [3].
Другими словами, они относятся к категории характеризуемых нерыночных ценностей [27].
Основные принципы, используемые при разработке методик определения ущерба ОС, возникающего при строительстве и эксплуатации промышленных объектов, включают следующие положения:
· необходимость компенсации затрат на воспроизводство нарушенных или уничтоженных природных ресурсов;
· учет потребностей экономики и предотвращение возможных потерь природных ресурсов, вызванных деятельностью промышленных предприятий (средозащитная деятельность);
· необходимость выравнивания экономических условий и последствий деятельности хозяйственных субъектов, компенсация экономических потерь (упущенных выгод).
По данным Большакова и др. [3], наименее разработанными при оценке ущербов, наносимых разным видам ресурсов, следует считать как теоретические, так и методические вопросы определения ущерба лесным и другим возобновимым ресурсам (охотничье-промысловые, ресурсы побочного пользования лесом и др.). Например, попенная плата в настоящее время не зависит от затрат на воспроизводство, подготовку и вовлечение в оборот лесных ресурсов. Реальные затраты и ассигнования на лесовос-становительные, лесохозяйственные мероприятия в различных условиях значительно (в десятки раз) различаются.
В зависимости от различных подходов схема расчетов также может различаться. Так, например, охотничье хозяйство владело только собственно объектами охоты и не владело охотничьими угодьями. Леса относились к ведению лесного хозяйства, являясь одновременно охотничьими угодьями, сельскохозяйственные угодья – к ведению сельского хозяйства. Это порождало методики расчета ущербов только для охотничьих животных или для охотничьих животных вкупе с охотничьими угодьями.
При использовании ресурсного подхода к оценке стоимости возникают две основные проблемы:
· цены ресурса. В советское время не было выработано единого подхода к проблеме ценообразования [3].В настоящее время это усложняется появлением инфляции;
· при ресурсном подходе к оценке при расчете ущерба исключается огромный класс объектов, не имеющих в настоящее время потребительской стоимости. Другими словами, эти объекты относятся к категории нехарактеризуемых нерыночных ценностей [27].
Абсурдность подобного рассмотрения заключается в том, что человек при таком подходе к расчету ущербов окружающей природной среде фактически рассчитывает ущерб одним видом хозяйственной человеческой деятельности (например, при освоении нефтяных или газовых месторождений) другому виду хозяйственной человеческой деятельности (например, лесному, охотничьему, рыбному хозяйствам), но никак не природной среде [3].
Коренная перестройка системы общественных ценностей должна происходить по линии включения в их число стоимости ресурсов природы, выраженной в денежном эквиваленте.
Безопасность работы оборудования под давлением выше атмосферного
При осуществлении различных технологических процессов, проведении ремонтных работ, в быту и т.д. широко распространены различные системы повышенного давления, к которым относится следующее оборудование: трубопроводы, баллоны и емкости для хранения или перевозки сжатых, сжиженных и растворенных газов, паровые и водяные котлы, газгольдеры и др. Основной характеристикой этого оборудования является то, что давление газа или жидкости в нем превышает атмосферное. Это оборудование принято называть сосудами, работающими под давлением.
Основное требование к этим сосудам – соблюдение их герметичности
на протяжении всего периода эксплуатации. Герметичность – это непроницаемость жидкостями и газами стенок и соединений, ограничивающих внутренние объемы сосудов, работающих под давлением. Кроме этих сосудов требования по герметичности обязательны и для вакуумных установок и оборудования1.
1 Вакуумным называют оборудование, в котором различные технологические процессы протекают в среде разреженных газов. С физической точки зрения к разреженным относятся газы, находящиеся при столь малых давлениях, что средняя длина свободного пробега их молекул соизмерима с линейными размерами того оборудования, в котором эти газы находятся.
Любые сосуды, работающие под давлением, всегда представляют собой потенциальную опасность, которая при определенных условиях может трансформироваться в явную форму и повлечь тяжелые последствия. Разгерметизация (потеря герметичности) сосудов, работающих под давлением, достаточно часто сопровождается возникновением двух групп опасностей.
Первая из них связана с взрывом сосуда или установки, работающей под давлением. Взрывом называют быстропротекающий процесс физических и химических превращений веществ, сопровождающийся освобождением большого количества энергии в ограниченном объеме, в результате которого в окружающем пространстве образуется и распространяется ударная волна1, способная создать угрозу жизни и здоровью людей. При взрыве может произойти разрушение здания, в котором расположены сосуды, работающие под давлением, или его частей, а также травмирование персонала разлетающимися осколками оборудования.
1 Ударной волной называется распространение в газообразной, жидкой или твердой среде поверхности, на которой происходит скачкообразное повышение давления, сопровождающееся изменением плотности, температуры и скорости движения среды. Эта поверхность называется поверхностью взрыва или скачком уплотнения.
Вторая группа опасностей зависит от свойств веществ, находящихся в оборудовании, работающем под давлением. Так, обслуживающий персонал может получить термические ожоги, если в разгерметизировавшейся установке находились вещества с высокой или низкой температурой. Если в сосуде находились агрессивные вещества, то работающие могут получить химические ожоги; кроме того, при этом возникает опасность отравления персонала. Радиационная опасность возникает при разгерметизации установок, содержащих различные радиоактивные вещества. Таким образом, для обеспечения безопасности персонала, обслуживающего сосуды под давлением, весьма важно, чтобы эксплуатируемое оборудование сохраняло герметичность.
Рассмотрим основные виды сосудов и аппаратов, работающих под давлением.
Трубопроводы – это устройства для транспортировки жидкостей и газов. По существующему ГОСТу 14202-69 все жидкости и газы; транспортируемые по ним, разбиты на десять групп. Для определения вида вещества, транспортируемого по трубопроводам, их окрашивают в соответствующие цвета (опознавательная окраска):
Вода – зеленый
Пар – красный
Воздух – синий
Газы горючие и негорючие – желтый
Кислоты – оранжевый
Щелочи – фиолетовый
Жидкости горючие и негорючие – коричневый
Прочие вещества – серый
Кроме опознавательной окраски на трубопроводы наносят краской предупредительные (сигнальные) цветные кольца:
Цвет наносимого Транспортируемые вещества на трубопровод кольца
Красный – Взрывоопасные, огнеопасные, легковоспламеняющиеся
Зеленый – Безопасные или нейтральные
Желтый – Токсичные или иной вид опасности, например глубокий вакуум, высокое
давление, наличие радиации
Количество сигнальных колец определяет степень опасности. Баллоны – это сосуды для транспортировки и хранения сжатых и растворенных газов. Различают (согласно ГОСТу 949-73) баллоны малой (0,4–12 л), средней (20–50 л) и большой (80– 500 л) вместимости. В зависимости от содержащихся газов баллоны окрашивают в соответствующие сигнальные цвета, а также на их поверхность наносят надпись, указывающую вид газа, а в ряде случаев – отличительные полосы (табл. 21.1).
В верхней части каждого стального баллона выбиты следующие данные: товарный знак предприятия-изготовителя; дата (месяц и год) изготовления (последнего испытания) и год следующего испытания; вид термообработки материала баллона; рабочее и пробное гидравлическое давление, МПа; емкость баллона, л; масса баллона, кг; клеймо ОТК; обозначение действующего стандарта.
Криогенные сосуды
предназначены для хранения и транспортировки различных сжиженных газов: воздуха, кислорода, аргона и др. В соответствии с ГОСТом 16024-79 Е их выпускают шести типоразмеров; 6; 3; 10; 16; 25 и 40 л. Эти сосуды маркируются следующим образом: например СК-40 – сосуд криогенный емкостью 40 л. Снаружи их окрашивают серебристой или белой эмалью и посередине наносят отличительную полосу с названием сжиженного газа, находящегося в сосуде. Кроме рассмотренных сосудов для хранения больших количеств сжиженных газов используют стационарные резервуары (объемом до 500 тыс. л и более), а для их перевозки – транспортные сосуды (цистерны), имеющие объем до 35 тыс. л.
Газгольдеры
предназначены для хранения и выдачи больших количеств сжатых газов, отделения от них механических примесей и других целей. Различают газгольдеры высокого и низкого давления. В первых из них сжатый газ находится по одним из следующих давлений: менее 25; 32 и 40 МПа.
Газгольдеры низкого давления рассчитаны на большой объем хранимых газов: 105-3?107 л.
Кроме рассмотренных герметичных устройств и установок применяют также автоклавы1, компрессоры2, котлы.
1 Автоклавы – герметичные установки, предназначенные для проведения различных тепловых и химических процессов под повышенным давлением.
2 Компрессоры – устройства для получения сжатого воздуха давлением свыше 3?105 Па.
В нашей стране обеспечение безопасности работы герметичных устройств регламентируется нормативным документом:
«Правила устройства и безопасной эксплуатации стационарных компрессорных установок, воздухопроводов и газопроводов» и др.
Рассмотрим теперь основные причины, приводящие к разгерметизации сосудов, работающих под давлением. Их принято делить на эксплуатационные и технологические.
Первой эксплуатационной причиной разгерметизации является образование взрывоопасных смесей,
состоящих из горючих газов, паров или жидкостей и окислителя. Примером таких смесей могут служить ацетилен и кислород, водород и кислород, пары этилового спирта и кислород и др.
Взрывоопасные смеси «горючее–окислитель» могут возгораться и взрываться, если имеется инициатор (источник) зажигания, в качестве которого может выступить электрическая искра (например, возникающая в результате накопления статического электричества), искры от газо- и электросварки, искры, возникающие от удара стальных предметов, нагретые тела и др. Существует также ряд самовоспламеняющихся систем, для которых не требуется инициатор зажигания. Примером таких систем могут служить натрий или калий, которые при нормальной температуре взрываются при соприкоановении с хлороформом.
Для предотвращения взрывов следует исключать возможность образования систем «горючее–окислитель», предотвращать инициирование горения, а также обеспечивать локализацию очага горения.
Исключить образование взрывоопасных смесей в системе «горючее–окислитель» можно следующими путями. Во-первых, максимально ограничивать концентрацию горючего вещества в смеси с окислителем, чтобы в этой системе не образовывалась взрывоопасная смесь.
Во-вторых, рекомендуется добавлять к взрывоопасным смесям «горючее-окислитель» инертные компоненты, называемые флегматизаторами. Примером таких веществ могут служить азот и углекислый газ. Эти вещества не участвуют в реакции горения и способны ее тормозить.
Для того чтобы предотвратить инициирование процесса горения, необходимо нейтрализовать источники зажигания. Это достигается заземлением оборудования для исключения возможности накапливания статического электричества, применением безискрового (не дающего искр в процессе эксплуатации) инструмента и другими мероприятиями.
Локализацию очага горения применяют, если существует вероятность образования взрывоопасной смеси и имеется инициатор зажигания. В этом случае используют огневзрывопреградители, которые ограничивают очаг горения в пределах определенного аппарата или газопровода, способного выдержать последствия горения. Передача горящей смеси в другие аппараты, таким образом, исключается.
Вторая эксплуатационная причина разгерметизации установок и аппаратов, работающих под давлением, – это так называемые побочные процессы, протекающие в них и приводящие к постепенному изменению и разрушению конструкционных материалов, из которых эти установки изготовлены. Примерами таких процессов могут служить коррозия стенок аппаратов, образование накипи на стенках котлов, уменьшение прочностных свойств материалов установок и др. Для того чтобы исключить влияние побочных процессов, необходимо своевременно и качественно проводить профилактические и ремонтные работы сосудов, работающих по давлением, а также правильно их эксплуатировать.
Технологические причины разгерметизации – это различные дефекты (трещины, вмятины, дефекты сварки и др.), возникшие при изготовлении, хранении и транспортировке сосудов, работающих под давлением.
Для своевременного обнаружения этих дефектов применяют различные методы контроля: внешний осмотр сосудов и аппаратов, работающих под давлением, неразрушающие методы контроля (люминесцентные, ультразвуковые и рентгеновские методы), гидравлические испытания сосудов, механические испытания материалов, из которых изготовлены сосуды, и др.
Меры безопасности при эксплуатации газовых баллонов:
§ газовые баллоны необходимо хранить в вертикальном положении в проветриваемом помещении или под навесами. Их следует защищать от действия прямых солнечных лучей и осадков. Баллоны не должны храниться на расстоянии менее 1 м от радиаторов отопления и ближе 5 м от открытого огня;
§ нельзя переносить баллоны на плечах или руками в обхват;
§ эксплуатировать можно только исправные баллоны. Их надо устанавливать вертикально на месте проведения работ и надежно закреплять для предохранения от падения. Установленный баллон должен быть надежно защищен от воздействия открытого огня, теплового излучения и прямых солнечных лучей.
Контрольные вопросы
1. Дайте определение понятия «сосуд, работающий под давлением».
2. Какие виды сосудов, работающих под давлением, вы знаете?
3. Что такое сигнальная окраска трубопроводов?
4. Перечислите цвета окраски баллонов.
5. Каковы основные условия безопасной эксплуатации сосудов, работающих под давлением?
6. Как необходимо хранить и транспортировать сосуды, работающие под давлением?
Обеспечение безопасности при работе с компьютером
В настоящее время компьютерная техника широко применяется во всех областях деятельности человека. При работе с компьютером человек подвергается воздействию ряда опасных и вредных производственных факторов: электромагнитных полей (диапазон радиочастот: ВЧ, УВЧ и СВЧ), инфракрасного и ионизирующего излучений, шума и вибрации, статического электричества и др.
Работа с компьютером характеризуется значительным умственным напряжением и нервно-эмоциональной нагрузкой операторов, высокой напряженностью зрительной работы и достаточно большой нагрузкой на мышцы рук при работе с клавиатурой ЭВМ. Большое значение имеет рациональная конструкция и расположение элементов рабочего места, что важно для поддержания оптимальной рабочей позы1 человека-оператора.
1 Рабочая поза – положение тела человека в процессе труда. Наиболее распространенными рабочими позами являются позы «стоя» и «сидя».
В процессе работы с компьютером необходимо соблюдать правильный режим труда и отдыха. В противном случае у персонала отмечаются значительное напряжение зрительного аппарата с проявлением жалоб на неудовлетворенность работой, головные боли, раздражительность, нарушение сна, усталость и болезненные ощущения в глазах, в пояснице, в области шеи и руках.
Рассмотрим основные требования к помещениям, где установлены компьютеры. В зависимости от ориентации окон рекомендуется следующая окраска стен и пола помещения:
§ окна ориентированы на юг – стены зеленовато-голубого или светло-голубого цвета; пол – зеленый;
§ окна ориентированы на север – стены светло-оранжевого или оранжево-желтого цвета; пол – красновато-оранжевый;
§ окна ориентированы на восток – стены желто-зеленого цвета; пол зеленый или красновато-оранжевый;
§ окна ориентированы на запад – стены желто-зеленого или голубовато-зеленого цвета; пол – зеленый или красновато-оранжевый.
В помещениях, где находится компьютер, необходимо обеспечить следующие величины коэффициента отражения, %:
Для потолка – 60 – 70
Для стен – 40 – 50
Для пола – 30
Для других поверхностей и рабочей мебели – 30 – 40
Освещение помещений вычислительных центров должно быть смешанным.
При выполнении работ категории высокой зрительной точности (наименьший размер объекта различения 0,3–0,5 мм) величина коэффициента естественного освещения (КЕО) должна быть не ниже 1,5%, а при зрительной работе средней точности (наименьший размер объекта различения 0,5–1,0 мм) КЕО должен быть не ниже 1,0%. В качестве источников искусственного освещения обычно используются люминесцентные лампы типа ЛБ или ДРЛ, которые попарно объединяются в светильники. Эти светильники должны располагаться над рабочими поверхностями в равномерно-прямоугольном порядке. Требования к освещенности в помещениях, где установлены компьютеры, следующие: при выполнении зрительных работ высокой точности общая освещенность должна составлять 300 лк, а комбинированная – 750 лк; аналогичные требования при выполнении работ средней точности – 200 и 300 лк соответственно.
Вычислительная техника является источником существенных тепловыделений, что может привести к повышению температуры и снижению относительной влажности в помещении. В помещениях, где установлены компьютеры, должны соблюдаться определенные параметры микроклимата (табл. 24.1).
Объем помещений, в которых размещены работники вычислительных центров, не должен быть меньше 19,5 м3/человека с учетом максимального числа одновременно работающих в смену. Нормы подачи свежего воздуха в помещения, где расположены компьютеры, приведены в табл. 24.2.
Для подачи в помещение воздуха используются системы механической вентиляции и кондиционирования, а также естественная вентиляция.
Уровень шума на рабочем месте математиков-программистов и операторов видеоматериалов не должен превышать 50 дБА, а в залах обработки информации на вычислительных машинах – 65 дБА.
Для снижения уровня шума стены и потолок помещений, где установлены компьютеры, должны быть облицованы звукопоглощающими материалами (см. гл. 17). Уровень вибрации в помещениях вычислительных центров может быть снижен путем установки оборудования на специальные фундаменты и виброизоляторы.
Установлено, что максимальная напряженность электрической составляющей электромагнитного поля достигается на кожухе дисплея. Допустимые значения параметров неионизирующих электромагнитных излучений от монитора компьютера представлены в табл. 24.3.
Максимальный уровень рентгеновского излучения на рабочем месте оператора компьютера обычно не превышает 10 мкбэр/ч, а интенсивность ультрафиолетового и инфракрасного излучений от экрана монитора лежит в пределах 10–100 мВт/м2.
Большинство ученых считают, что как кратковременное, так и длительное воздействие всех видов излучения от экрана монитора не опасно для здоровья персонала, обслуживающего компьютеры. Однако исчерпывающих данных относительно опасности воздействия излучения от мониторов на работающих с компьютерами не существует и исследования в этом направлении продолжаются.
Для снижения воздействия перечисленных видов излучения на операторов компьютеров рекомендуется применять мониторы с пониженной излучательной способностью, устанавливать защитные экраны, а также соблюдать регламентированные режимы труда и отдыха.
Требования к организации рабочего места оператора:
§ высота стола с клавиатурой должна составлять 62–88 см над уровнем стола; а высота экрана (над полом) – 90–128 см;
§ расстояние от экрана до края стола – 40–115 см;
§ наклон экрана – от –15 до +20° по отношению к нормальному его положению;
§ положение спинки кресла оператора должно обеспечивать наклон тела назад от 97–121°.
Клавиатуру следует делать отдельной от экрана и подвижной. Усилие нажима на клавиши должно лежать в пределах 0,25– 1,5 Н, а ход клавишей – 1–5 мм.
Существенное значение для производительной и качественной работы на компьютере имеют размеры знаков, плотность их размещения, контраст и соотношение яркостей символов и фона экрана. Если расстояние от глаз оператора до экрана дисплея составляет 60–80 см, то высота знака должна быть не менее 3 мм, оптимальное соотношение ширины и высоты знака составляет 3 : 4, а расстояние между знаками – 15–20% их высоты. Соотношение яркости фона экрана и символов – от 1 : 2– 1 : 5 до 1 : 10-1 : 15.
В табл. 24.4 представлены сведения о регламентированных перерывах, которые необходимо делать при работе на компьютере, в зависимости от продолжительности рабочей смены, видов и категорий трудовой деятельности с ВДТ1 и ПЭВМ2 (в соответствии с СанПиН 2.2.2 542-96 «Гигиенические требования к видеодисплейным терминалам, персональным электронно-вычислительным машинам и организации работ»).
1 ВДТ – видеодисплейный терминал.
2 ПЭВМ – персональная электронно-вычислительная машина.
Примечание. Время перерывов дано при соблюдении указанных Санитарных правил и норм. При несоответствии фактических условий труда требованиям Санитарных правил и норм время регламентированных перерывов следует увеличить на 30%.
В соответствии со СанПиН 2.2.2 546-96 все виды трудовой деятельности, связанные с использованием компьютера, разделяются на три группы:
§ группа А – работа по считыванию информации с экрана ВДТ или ПЭВМ с предварительным запросом;
§ группа Б – работа по вводу информации;
§ группа В – творческая работа в режиме диалога с ЭВМ. Эффективность перерывов повышается при сочетании с производственной гимнастикой.
Контрольные вопросы
1. Перечислите основные опасные и вредные производственные факторы, действующие на оператора компьютера.
2. Каковы требования к освещению в помещениях вычислительных центров?
3. Каковы параметры микроклимата в помещениях, где установлены компьютеры?
4. Как организуется рабочее место оператора компьютера?
5. Каковы требования к клавиатуре компьютера?
6. Каковы режимы труда и отдыха при работе с компьютером?
Опасные и вредные производственные факторы Общие понятия
В процессе жизнедеятельности человек подвергается воздействию различных опасностей, под которыми обычно понимают явления, процессы, объекты, способные в определенных условиях наносить ущерб здоровью человека непосредственно или косвенно, т.е. вызывать различные нежелательные последствия.
Человек подвергается воздействию опасностей и в своей трудовой деятельности. Эта деятельность осуществляется в пространстве, называемом производственной средой. В условиях производства на человека в основном действуют техногенные, т.е. связанные с техникой, опасности, которые принято называть опасными и вредными производственными факторами.
Опасным производственным фактором
(ОПФ) называется такой производственный фактор, воздействие которого на работающего в определенных условиях приводит к травме или к другому внезапному резкому ухудшению здоровья. Травма – это повреждение тканей организма и нарушение его функций внешним воздействием. Травма является результатом несчастного случая на производстве, под которым понимают случай воздействия опасного производственного фактора на работающего при выполнении им трудовых обязанностей или заданий руководителя работ.
Вредным производственным фактором
(ВПФ) называется такой производственный фактор, воздействие которого на работающего в определенных условиях приводит к заболеванию или снижению трудоспособности. Заболевания, возникающие под действием вредных производственных факторов, называются профессиональными.
К опасным производственным факторам следует отнести, например:
§ электрический ток определенной силы;
§ раскаленные тела;
§ возможность падения с высоты самого работающего либо различных деталей и предметов;
§ оборудование, работающее под давлением выше атмосферного, и т.д.
К вредным производственным факторам относятся:
§ неблагоприятные метеорологические условия;
§ запыленность и загазованность воздушной среды;
§ воздействие шума, инфра- и ультразвука, вибрации;
§ наличие электромагнитных полей, лазерного и ионизирующих излучений и др.
Все опасные и вредные производственные факторы в соответствии с ГОСТ 12.0.003- 74 подразделяются на физические, химические, биологические и психофизиологические.
К физическим факторам относят электрический ток, кинетическую энергию движущихся машин и оборудования или их частей, повышенное давление паров или газов в сосудах, недопустимые уровни шума, вибрации, инфра- и ультразвука, недостаточную освещенность, электромагнитные поля, ионизирующие излучения и др.
Химические факторы представляют собой вредные для организма человека вещества в различных состояниях.
Биологические
факторы – это воздействия различных микроорганизмов, а также растений и животных.
Психофизиологические
факторы – это физические и эмоциональные перегрузки, умственное перенапряжение, монотонность труда.
Четкой границы между опасным и вредным производственными факторами часто не существует. Рассмотрим в качестве примера воздействие на работающего расплавленного металла. Если человек попадает под его непосредственное воздействие (термический ожог), это приводит к тяжелой травме и может закончиться смертью пострадавшего. В этом случае воздействие расплавленного металла на работающего является согласно определению опасным производственным фактором.
Если же человек, постоянно работая с расплавленным металлом, находится под действием лучистой теплоты, излучаемой этим источником, то под влиянием облучения в организме происходят биохимические сдвиги, наступает нарушение деятельности сердечно-сосудистой и нервной систем. Кроме того, длительное воздействие инфракрасных лучей вредно влияет на органы зрения – приводит к помутнению хрусталика. Таким образом, во втором случае воздействие лучистой теплоты от расплавленного металла на организм работающего является вредным производственным фактором.
Состояние условий труда, при котором исключено воздействие на работающих опасных и вредных производственных факторов, называется безопасностью труда.
Безопасность жизнедеятельности в условиях производства имеет и другое название – охрана труда. В настоящее время последний термин считается устаревшим, хотя вся специальная отечественная литература, изданная приблизительно до 1990 г., использует именно его.
Охрана труда определялась как система законодательных актов, социально-экономических, организационных, технических, гигиенических и лечебно-профилактических мероприятий и средств, обеспечивающих безопасность, сохранение здоровья и работоспособности в процессе труда.
Будучи комплексной дисциплиной, «Охрана труда» включала следующие разделы: производственная санитария, техника безопасности, пожарная и взрывная безопасность, а также законодательство по охране труда. Кратко охарактеризуем каждый из этих разделов.
Производственная санитария –
это система организационных мероприятий и технических средств, предотвращающих или уменьшающих воздействие на работающих вредных производственных факторов.
Техника безопасности –
система организационных мероприятий и технических средств, предотвращающих воздействие на работающих опасных производственных факторов.
Пожарная и взрывная безопасность –
это система организационных и технических средств, направленных на Профилактику и ликвидацию пожаров и взрывов, ограничение их последствий.
Законодательство по охране труда
составляет часть трудового законодательства.
Одна из самых распространенных мер по предупреждению неблагоприятного воздействия на работающих опасных и вредных производственных факторов – использование средств коллективной и индивидуальной защиты. Первые из них предназначены для одновременной защиты двух и более работающих, вторые – для защиты одного работающего. Так, при загрязнении пылью воздушной среды в процессе производства в качестве коллективного средства защиты может быть рекомендована общеобменная приточно-вытяжная вентиляция, а в качестве индивидуального – респиратор.
Введем понятие основных нормативов безопасности труда. Как уже сказано выше, при безопасных условиях труда исключено воздействие на работающих опасных и вредных производственных факторов.
Всегда ли в условиях реального производства можно так организовать технологический процесс, чтобы значения воздействующих на работающих опасных и вредных производственных факторов равнялись нулю (чтобы на работающих не действовали опасные и вредные производственные факторы)?
Эта задача в принципе эквивалентна задаче создания безопасной техники, т. е. достижения абсолютной безопасности труда. Однако абсолютная безопасность либо технически недостижима, либо экономически нецелесообразна, так как стоимость разработки безопасной техники обычно превышает эффект от ее применения. Поэтому при разработке современного оборудования стремятся создать максимально безопасные машины, оборудование, установки и приборы, т. е. свести риск1 при работе с ними к минимуму. Однако этот параметр не может быть сведен к нулю.
1 Риск – количественная характеристика действия опасностей, формируемых конкретной деятельностью человека.
Существующие нормативы безопасности делятся на две большие группы: предельно допустимые концентрации (ПДК), характеризующие безопасное содержание вредных веществ химической и биологической природы в воздухе рабочей зоны, а также предельно допустимые уровни (ПДУ) воздействия различных опасных и вредных производственных факторов физической природы (шум, вибрация, ультра- и инфразвук, электромагнитные поля, ионизирующие излучения и т.д.).
По особому нормируются психофизиологические опасные и вредные производственные факторы. Они могут быть охарактеризованы параметрами трудовых (рабочих) нагрузок и (или) показателями воздействия этих нагрузок для человека.
В практических целях нормативы безопасности применяются следующим образом. Предположим, нужно определить, является ли безопасным для работающих воздух рабочей зоны, в котором содержатся пары бензина. По нормативным документам (ГОСТ 12.1.005-88 «Воздух рабочей зоны. Общие санитарно-гигиенические требования») находят, что величина предельно допустимой (безопасной) концентрации (ПДК) этого вещества составляет 100 мг/м3.
Если действительная концентрация бензина в воздухе не превышает этого значения (например, составляет 90 мг/м3), то такой воздух является безопасным для работающих. В противном случае необходимо применить специальные меры для снижения повышенной концентрации паров бензина до безопасного значения (например, используя общеобменную приточно-вытяжную вентиляцию).
Таким же образом для характеристики безопасности при воздействии опасных и вредных производственных факторов физической природы используют понятие предельно допустимого уровня (ПДУ) этого фактора. Если нужно, например, определить безопасные допустимые уровни напряжения и тока, то по справочной литературе2 находят интересующие значения. Так, для переменного тока частотой 50 Гц (промышленная частота) при продолжительности воздействия на организм человека свыше 1 с эти значения составят: напряжение (V) –
36В, ток (I) – 6 мА (1 мА = 10-3A). Действие на организм человека электрического тока с параметрами, превышающими указанные значения, опасно.
2 См.: Метрологическое
обеспечение безопасности труда. В 2 т. / Под ред. И.Х. Сологяна. Т. 1. Измеряемые параметры физических опасностей и вредных факторов. – М-: Издательство стандартов, 1988.
Далее рассмотрим влияние основных опасных и вредных факторов, действующих в условиях производства на организм человека.
Контрольные вопросы
55. Дать определение понятий «опасный производственный фактор» (ОПФ) и «вредный производственный фактор» (ВПФ). Существует ли между ними четкая граница?
56. Как подразделяются опасные и вредные производственные факторы?
57. Дать определение понятий «безопасность труда», «производственная санитария», «техника безопасности», «пожарная и взрывная безопасность».
58. Что такое средства коллективной и индивидуальной защиты?
59. Какие основные нормативы безопасности труда вы знаете?
Основные требования безопасности к промышленному оборудованию
При проектировании и изготовлении машин и оборудования необходимо учитывать основные требования безопасности для обслуживающего их персонала, а также надежность и безопасность эксплуатации этих устройств.
При проведении различных технологических процессов на производстве возникают опасные зоны, в которых на работающих воздействуют опасные и (или) вредные производственные факторы. Примером таких факторов могут служить опасность механического травмирования (получение травм в результате воздействия движущихся частей машин и оборудования, передвигающихся изделий, падающих с высоты предметов и др.), опасность поражения электрическим током, воздействие различных видов излучения (теплового, электромагнитного, ионизирующего), инфра- и ультразвука, шума, вибрации и т.д.
Размеры опасной зоны в пространстве могут быть переменными, что связано с движением частей оборудования или транспортных средств, а также с перемещением персонала, либо постоянными.
Как уже сказано выше (гл. 13), для защиты от воздействия опасных и вредных производственных факторов используют средства коллективной и индивидуальной защиты. Здесь рассмотрим основные средства коллективной защиты, которые делятся на оградительные, предохранительные, блокирующие, сигнализирующие, системы дистанционного управления машинами и оборудованием, а также специальные.
Оградительными средствами защиты,
или ограждениями, называют устройства, препятствующие появлению человека в опасной зоне. Ограждения могут быть стационарными (несъемными), подвижными (съемными) и переносными. Практически ограждения выполняются в виде различных сеток, решеток, экранов, кожухов и др. Они должны иметь такие размеры и быть установлены таким образом, чтобы в любом случае исключить доступ человека в опасную зону.
При устройстве ограждений должны соблюдаться определенные требования:
§ ограждения должны быть достаточно прочными, чтобы выдерживать удары частиц (стружки), возникающих при обработке деталей, а также случайное воздействие обслуживающего персонала, и надежно закрепленными;
§ ограждения изготавливаются из металлов (как сплошных, так и металлических сеток и решеток), пластмасс, дерева, прозрачных материалов (органическое стекло, триплекс и др.);
§ все открытые вращающиеся и движущиеся части машин должны быть закрыты ограждениями;
§ внутренняя поверхность ограждений должна быть окрашена в яркие цвета (ярко-красный, оранжевый), чтобы было заметно, если ограждение снято;
§ запрещается работа со снятым или неисправным ограждением.
Предохранительные устройства –
это такие устройства, которые автоматически отключают машины или агрегаты при выходе какого-либо параметра оборудования за пределы допустимых значений. Это звено разрушается или не срабатывает при отклонении режима эксплуатации оборудования от нормального. Общеизвестный пример такого звена – плавкие электрические предохранители («пробки»), предназначенные для защиты электрической сети от больших токов, вызываемых короткими замыканиями и очень большими перегрузками. Такие токи могут повредить электроаппаратуру и изоляцию проводов, а также привести к пожару. Плавкий предохранитель действует следующим образом: ток проходит через тонкую проволоку (плавкую вставку), сечение которой рассчитано на определенный максимальный ток. При перегрузке проволока расплавляется, отключая неисправный или перегруженный током участок сети.
Примерами устройств этого типа могут служить: предохранительные клапаны и разрывные мембраны, устанавливаемые на сосуды, работающие под давлением, для предотвращения аварии; различные тормозные устройства, позволяющие быстро остановить движущиеся части оборудования; концевые выключатели и ограничители подъема, предохраняющие движущиеся механизмы от выхода за установленные пределы, и др.
Блокировочные устройства
исключают возможность проникновения человека в опасную зону или устраняют опасный фактор на время пребывания человека в опасной зоне.
По принципу действия различают механические, электрические, фотоэлектрические, радиационные, гидравлические, пневматические и комбинированные блокировочные устройства.
Широко известно применение фотоэлектрических блокировочных устройств в конструкциях турникетов, установленных на входах станций метрополитена. Проход через турникет контролируется световыми лучами. При несанкционированной попытке прохода через турникет человека на станцию (не предъявлена магнитная карточка) он пересекает световой поток, падающий на фотоэлемент. Изменение светового потока дает сигнал на измерительно-командное устройство, которое приводит в действие механизмы, перекрывающие проход. При санкционированном проходе блокировочное устройство отключается.
Различные сигнализирующие устройства
предназначены для информации персонала о работе машин и оборудования, для предупреждения об отклонениях технологических параметров от нормы или о непосредственной угрозе.
По способу представления информации различают сигнализацию звуковую, визуальную (световую) и комбинированную (светозвуковую). В газовом хозяйстве используют одорационную (по запаху) сигнализацию об утечке газа, подмешивая к газу пахнущие вещества.
В шумных условиях рекомендуется использовать визуальную сигнализацию, которая включает различные источники света, световые табло, цветовую окраску и т.д. Для звуковой сигнализации используют сирены или звонки.
В зависимости от назначения все системы сигнализации принято делить на оперативную, предупредительную и опознавательную. Оперативная сигнализация представляет информацию о протекании различных технологических процессов. Для этого используются различные измерительные приборы – амперметры, вольтметры, манометры, термометры и др. Предупредительная сигнализация включается в случае возникновения опасности. В устройстве этой сигнализации используют все перечисленные выше способы представления информации.
Опознавательная сигнализация служит для выделения наиболее опасных узлов и механизмов промышленного оборудования, а также зон.
В красный цвет окрашивают сигнальные лампочки, предупреждающие об опасности, кнопку «стоп»», противопожарный инвентарь, токоведущие шины и др. В желтый – элементы строительных конструкций, которые могут являться причиной получения травм персоналом, внутризаводской транспорт, ограждения, устанавливаемые на границах опасных зон, и т.д. В зеленый цвет окрашивают сигнальные лампы, двери эвакуационных и запасных выходов, конвейеры, рольганги и другое оборудование. Применение опознавательной окраски различных баллонов рассмотрено в гл. 21.
Кроме отличительной окраски, используют и различные знаки безопасности, о некоторых из них упомянуто в гл. 21. Эти знаки наносят на цистерны, контейнеры, электроустановки и другое оборудование.
Системы дистанционного управления
основаны на использовании телевизионных или телеметрических систем, а также визуального наблюдения с удаленных на достаточное расстояние от опасных зон участков. Управление работой оборудования из безопасного места позволяет убрать персонал из труднодоступных зон и зон повышенной опасности. Чаще всего системы дистанционного управления используют при работе с радиоактивными, взрывоопасными, токсичными и легковоспламеняющимися веществами и материалами.
В ряде случаев применяют специальные средства защиты, к которым относятся двуручное включение машин1, различные системы вентиляции, глушители шума, осветительные приборы, защитное заземление и ряд др.
1 Двуручное включение машин и оборудования осуществляется двумя рукоятками посредством двух пусковых органов, что исключает случайный запуск этих устройств.
В тех случаях, когда не предусмотрены коллективные средства защиты работающих или они не дают требуемого эффекта, прибегают к индивидуальным средствам защиты, которые рассмотрены в предыдущих главах.
Контрольные вопросы
1. Что такое опасная зона?
2. Охарактеризуйте оградительные средства защиты.
3. Что такое предохранительные, блокирующие и сигнализирующие устройства?
4. Для чего используют системы дистанционного управления производственными процессами?
5. Что такое двуручное включение машин и оборудования?
Защита от электромагнитных полей и лазерного излучения
Электромагнитные волны возникают при ускоренном движении электрических зарядов. Электромагнитные волны – это взаимосвязанное распространение в пространстве изменяющихся электрического и магнитного полей. Совокупность этих полей, неразрывно связанных друг с другом, называется электромагнитным полем. Несмотря на то, что длина электромагнитных волн и их свойства различны, все они, начиная от радиоволн и заканчивая гамма-излучением, – одной физической природы. Исследованный в настоящее время диапазон электромагнитных волн состоит из волн с длинами, соответствующими частотам от 103 до 1024Гц. По мере убывания длины волны в диапазон включаются радиоволны, инфракрасное излучение, видимый свет (световые лучи), ультрафиолетовое излучение, рентгеновское излучение и гамма-излучение.
Источниками электромагнитных полей являются атмосферное электричество, космические лучи, излучение солнца, а также искусственные источники: различные генераторы, трансформаторы, антенны, лазерные установки, микроволновые печи, мониторы компьютеров и др. На предприятиях источниками электромагнитных полей промышленной частоты являются высоковольтные линии электропередач (ЛЭП), измерительные приборы, устройства защиты и автоматики, соединительные шины и др. В зависимости от длины волны электромагнитное излучение делят на ряд диапазонов (табл. 18.1).
* Представленные в таблице диапазоны частот включают верхние пределы и исключают нижние.
** Представленные в таблице диапазоны длин волн включают нижние пределы и исключают верхние.
Скорость распространения электромагнитных волн в вакууме не зависит от длины волны и равна: С = 2,997925 • 108 м/с.
Электромагнитная волна, распространяясь в неограниченном пространстве со скоростью света, создает переменное электромагнитное поле, которое способно воздействовать на заряженные частицы и токи, в результате чего происходит превращение энергии поля в другие виды энергии. Как уже сказано выше, переменное электромагнитное поле представляет собой совокупность магнитного и электрического полей, количественной характеристикой которых являются напряженность электрического поля Е
(размерность – вольт на метр, или, сокращенно, В/м) и напряженность магнитного поля Н (размерность – ампер на метр, или, сокращенно, А/м). Величины Е
и Н – векторные, их колебания происходят во взаимоперпендикулярных плоскостях.
При распространении в воздухе или в вакууме Е =377 Н.
Плотность потока энергии (I) может быть записана (в векторной форме) как .
Эти величины показывают, какое количество энергии протекает за 1 с через площадку, расположенную перпендикулярно движению волны.
Если сформировавшаяся электромагнитная волна имеет сферическую форму, то справедливо следующее равенство:
, (18.1)
где Pист
– мощность источника излучения, Вт;
r – расстояние от источника излучения, м.
Отсюда можно определить напряженность электрического поля по формуле:
E = . (18.2)
Начиная от источника излучения всю область распространения электромагнитных волн принято условно разделять на три зоны: ближнюю, промежуточную и дальнюю. Радиус ближней зоны приблизительно составляет 1/6 волны от источника излучения, а дальняя зона начинается на расстоянии, равном примерно 6 длинам волн; промежуточная зона находится между ними.
Переменные электромагнитные поля способны оказывать негативное воздействие на организм человека, последствия которого зависят от напряженности электрического и магнитного полей, частоты излучения, плотности потока энергии, размера облучаемой поверхности тела человека и индивидуальных способностей его организма. Ткани человеческого организма поглощают энергию электромагнитного поля1, в результате этого происходит нагрев тела человека. Интенсивнее всего электромагнитные поля воздействуют на органы и ткани с большим содержанием воды: мозг, желудок, желчный и мочевой пузырь, почки. При воздействии электромагнитного излучения на глаза человека возможно помутнение хрусталика (катаракта).
1 Проводящие электрический ток ткани человеческого организма (жидкие составляющие тканей, кровь и т.д.) нагреваются в результате возникновения в них вихревых токов, а непроводящие, т.е.
диэлектрики (хрящи, сухожилия и т.д.) – в результате возбуждаемых электромагнитным полем колебаний молекул диэлектрика с последующей их поляризацией, происходящих с выделением тепла.
Как известно, человеческий организм обладает свойством терморегуляции, т. е. поддержания постоянной температуры тела. При нагреве человеческого организма в электромагнитном поле происходит отвод избыточной теплоты до плотности потока энергии I = 10 мВт/см2. Эта величина называется тепловым порогом,
начиная с которого система терморегуляции не справляется с отводом генерируемого тепла, происходит перегрев организма человека, что негативно сказывается на его здоровье.
Воздействие электромагнитных полей с интенсивностью, меньшей теплового порога, также небезопасно для здоровья человека. Оно нарушает функции сердечно-сосудистой системы, ухудшает обмен веществ, приводит к изменению состава крови, снижает биохимическую активность белковых молекул. При длительном воздействии на работающих электромагнитного излучения различной частоты возникают повышенная утомляемость, сонливость или нарушение сна, боли в области сердца, торможение рефлексов и т.д.
Произошедшие под действием электромагнитных полей нарушения в организме обратимы, если в нем не произошло патологических изменений. Для этого необходимо либо прекратить контакт с излучением, либо разработать мероприятия по защите от него.
При воздействии на организм человека постоянных магнитных и электростатических полей с интенсивностью, превышающей безопасный уровень, могут развиться нарушения в деятельности сердечно-сосудистой системы, органов дыхания и пищеварения, возможно изменение состава крови и др. Электрические поля промышленной частоты (f = 50 Гц) воздействуют на мозг и центральную нервную систему.
Между человеком, находящимся в таком поле и обладающим определенным потенциалом, и металлическим проводником с меньшим потенциалом может возникнуть электрический заряд, приводящий к судорожным сокращениям мышц или иным, более тяжелым последствиям (см.
гл. 20).
Предельно допустимые уровни облучения в диапазоне радиочастот определяются ГОСТом 12.1.006-84 «Электромагнитные поля радиочастот. Допустимые уровни на рабочих местах и требования к проведению контроля». В соответствии с этим нормативным документом установлена предельно допустимая напряженность электрического поля (Eпд, В/м) в диапазоне 0,06 – 300 МГц и предельно допустимая энергетическая нагрузка за рабочий день [ЭН,
(В/м)2?ч]. Между этими величинами
существует следующая связь:
, (18.3)
где Т – время воздействия в течение рабочего дня, ч.
Для частот 0,06-3,0 МГц: = 500 В/м, =
20 000 (В/м)2 ч
Для частот 3,0–30 МГц: = 300 В/м, = 7000 (В/м)2ч
Для частот 30-300 МГц: = 80 В/м, = 800 (В/м)2ч
Предельно допустимая напряженность магнитного поля в диапазоне частот 0,06 – 3 МГц в соответствии с названным выше ГОСТом должна составлять HПД = 50 А/м. Между этой характеристикой и предельно допустимой энергетической нагрузкой за рабочий день [,
(А/м)2?ч] существует следующая зависимость:
, (18.4)
где Т – время воздействия, ч (величина не должна превышать 200 А/м2).
Предельно допустимые уровни воздействия постоянных магнитных полей нормируются в соответствии с СН № 1742-77. Напряженность такого поля (Я) не должна превышать 8000 А/м.
Электрические поля промышленной частоты нормируются в соответствии с ГОСТом 12.1.002-84 «Электрические поля промышленной частоты. Допустимые уровни напряжения и требования к проведению контроля на рабочих местах». В соответствии с этим нормативным документом предельно допустимый уровень напряженности электрического поля (Е)
составляет 25 000 В/м. Кроме того, оговаривается допустимое время пребывания (Т, ч) в электрическом поле с различной напряженностью:
Е, в/м До 5000 В/м 5000-20 000 В/м От 20 000 до 25 000 В/м
Т, ч В течение Вычисляют по формуле 1/6
рабочего дня
В нашей стране разработаны также гигиенические нормативы для электростатических полей, электрических полей диапазона частот 1–12 кГц, магнитных полей промышленной частоты (50 Гц) и др.
Рассмотрим основные методы защиты от электромагнитных излучений. К ним следует отнести рациональное размещение излучающих и облучающих объектов, исключающее или ослабляющее воздействие излучения на персонал; ограничение места и времени нахождения работающих в электромагнитном поле; защита расстоянием, т. е. удаление рабочего места от источника электромагнитных излучений; уменьшение мощности источника излучений; использование поглощающих или отражающих экранов; применение средств индивидуальной защиты и некоторые др.
Из перечисленных выше методов защиты чаще всего применяют экранирование или рабочих мест, или непосредственно источника излучения. Различают отражающие и поглощающие экраны. Первые изготавливают из материалов с низким электросопротивлением, чаще всего из металлов или их сплавов (меди, латуни, алюминия и его сплавов, стали). Весьма эффективно и экономично использовать не сплошные экраны, а изготовленные из проволочной сетки или из тонкой (толщиной 0,01–0,05 мм) алюминиевой, латунной или цинковой фольги. Хорошей экранирующей способностью обладают токопроводящие краски (в качестве токопроводящих элементов используют коллоидное серебро, порошковый графит, сажу и др.), а также металлические покрытия, нанесенные на поверхность защитного материала. Экраны должны заземляться.
Защитные действия таких экранов заключаются в следующем. Под действием электромагнитного поля в материале экрана возникают вихревые токи (токи Фуко), которые наводят в нем вторичное поле. Амплитуда наведенного поля приблизительно равна амплитуде экранируемого поля, а фазы этих полей противоположны. Поэтому результирующее поле, возникающее в результате суперпозиции (сложения) двух рассмотренных полей, быстро затухает в материале экрана, проникая в него на малую глубину.
Эффективность действия экрана, или эффективность экранирования (Э), может быть рассчитана по формуле:
Э = (18.5)
Где I0 – плотность потока энергии в данной точке при отсутствии экрана Вт/м2;
I – плотность потока энергии в той же точке при наличии экрана, Вт/м2;
или выражена в децибелах:
. (18.6)
Например, замкнутый экран, сваренный из листовой стали непрерывным швом, имеет эффективность экранирования в диапазоне частот 0,15–10 000 МГц примерно 100 дБ.
Другой вид экранов – поглощающие. Их действие сводится к поглощению электромагнитных волн. Эти экраны изготавливаются в виде эластичных и жестких пенопластов, резиновых ковриков, листов поролона или волокнистой древесины, обработанной специальным составом, а также из ферромагнитных пластин. Отраженная мощность излучения от этих экранов не превышает 4%. Например, радиопоглощающий материал «Луч», изготовленный из древесных волокон, в диапазоне длин волн излучения 0,15–1,5 м имеет отраженную мощность 1–3%.
Существуют и другие типы экранов, например, многослойные.
Экранами могут защищаться оконные проемы и стены зданий и сооружений, находящихся под воздействием электромагнитного излучения (ЭМИ). Строительные конструкции (стены, перекрытия зданий), а также отделочные материалы (краски и т.д.) могут либо поглощать, либо отражать электромагнитные волны.
Для защиты от электрических полей промышленной частоты, возникающих вдоль линий высоковольтных электропередач (ЛЭП), необходимо увеличивать высоту подвеса проводов линий, уменьшать расстояние между ними, создавать санитарно-защитные зоны вдоль трассы ЛЭП на населенной территории (табл. 18.2). В этих зонах ограничивается длительность работ, а также заземляются машины и оборудование.
Особым видом электромагнитного излучения является лазерное излучение, которое генерируется в специальных устройствах, называемых оптическими квантовыми генераторами или лазерами. Эти устройства широко применяются в различных областях науки и техники, в том числе для обработки различных материалов (получение отверстий, резка и т.д.), в медицине (проведение различных операций), в системах связи для передачи сигналов по лазерному лучу, для измерения расстояний, для получения объемных изображений предметов – голограмм и в ряде других областей.
Примечание. Значения, представленные в скобках, допускаются в порядке исключения для сельской местности.
Рубиновые лазеры излучают в оптической части спектра. Длительность импульсов составляет от нескольких миллисекунд (мс) до сотен наносекунд (нc). Энергия одного импульса может достигать сотен джоулей при мощности в сотни мегаватт (1МВт = 106Вт). В настоящее время разработан ряд оптических квантовых генераторов, использующих различные оптические среды (фтористый кальций, вольфрамат кальция, различные газы и др.). Эти лазеры могут работать как в импульсном, так и в непрерывном режимах.
Лазерное излучение – электромагнитное излучение, генерируемое в диапазоне волн 0,2–1000 мкм. Этот диапазон делится на следующие области спектра в соответствии с биологическим действием лазерного луча: 0,2–0,4 мкм – ультрафиолетовая область, 0,4–0,75 – видимая, 0,75–1,4 мкм – ближняя инфракрасная, свыше 1,4 мкм – дальняя инфракрасная область. Наиболее часто используют в технике лазеры с длинами волн, мкм: 0,34, 0,49-0,51, 0,53, 0,694, 1,06 и 10,6.
Воздействие излучения лазера на организм человека до конца не изучено. При работе лазерных установок на организм человека могут воздействовать следующие опасные и вредные производственные факторы: мощное световое излучение от ламп накачки, ионизирующее излучение, высокочастотные и сверхвысокочастотные электромагнитные поля, инфракрасное излучение, шум, вибрация, возникающие при работе лазерных установок, и др.
При воздействии лазерного излучения на организм человека возникают различные биологические эффекты, которые зависят от энергетических и временных параметров излучения и в первую очередь от энергетической экспозиции в импульсе, длины волны и времени воздействия лазерного излучения, вида облучаемой ткани человеческого организма и ряда других факторов. Энергетическая экспозиция может быть рассчитана по формуле:
Н = Ее
t ,
(18.7)
где Н - энергетическая экспозиция;
Ее - энергетическая освещенность (отношение энергии излучения, падающей на
рассматриваемый участок поверхности, к его площади);
t - время воздействия лазерного излучения.
Таким образом, с физической точки зрения энергетическая экспозиция – это отношение энергии излучения, падающей на рассматриваемый участок поверхности, к площади этого участка, умноженное на длительность облучения.
Различают первичные и вторичные биологические эффекты, возникающие под действием лазерного излучения. Первичные изменения происходят в тканях человека непосредственно под действием излучения (ожоги, кровоизлияния и т.д.), а вторичные (побочные явления) вызываются различными нарушениями в человеческом организме, развившимися вследствие облучения.
Наиболее чувствителен к воздействию лазерного излучения глаз человека. Воздействие на него лазерного излучения может привести к ожогам сетчатки и даже к потере зрения. Опасно попадание лазерного луча и на кожу человека, в результате чего могут возникнуть ожоги различной степени тяжести и даже обугливание кожи. Лазерные лучи высокой интенсивности могут вызвать не только повреждения кожи, но и поражение различных внутренних тканей и органов человека, что выражается в виде кровоизлияний, отеков, а также свертывания или распада крови.
Нормирование лазерного излучения производят в соответствии с СН № 2392-81 «Санитарные нормы и правила устройства и эксплуатации лазеров». Основным нормируемым параметром является энергетическая экспозиция (Н, Дж/см2) облучаемых тканей за определенное время воздействия лазерного излучения. Если нормируемая величина Н (предельно допустимый уровень) не превышена, то у работающих под воздействием лазерного излучения не будут вызываться первичные и вторичные биологические эффекты. Величина предельной энергетической экспозиции зависит от длины волны
лазерного излучения и длительности его воздействия на работающего. Пример такого нормирования для лазерного излучения с длиной волны от 0,2 до 0,4 мкм представлен в табл. 18.3. Общее время облучения в этом случае составляет рабочий день.
Энергетическая экспозиция нормируется на роговице глаза и коже.
Предельно допустимые уровни лазерного излучения (энергетической экспозиции) относятся к длинам волн от 0,2 до 20 мкм. Кроме того, в Санитарных нормах для длин волн от 0,4 до 1,4 мкм установлены предельно допустимые уровни энергетической экспозиции сетчатки глаза. Для видимой части спектра (0,4–0,75 мкм), кроме рассмотренных характеристик, дополнительно нормируется энергия излучения (Q, Дж) на сетчатке глаза.
К основным коллективным средствам защиты от лазерного излучения относятся применение защитных экранов и кожухов; использование телевизионных систем наблюдения за ходом технологического процесса с использованием лазера, а также систем блокировки и сигнализации; ограждение лазерно-опасной зоны, размеры которой определяют или расчетным, или экспериментальным путем. Следует защищаться не только от прямого излучения лазера, но и от рассеянного и отраженного излучений.
Напряженность постоянного магнитного поля может быть измерена отечественными приборами Ш1-8 или Ф-4355. Магнитное поле промышленной частоты при напряженности до 15 кА/м измеряют отечественным прибором Г-79, а в диапазоне частот 0,01–30 МГц – приборами ПЗ-15, П3-16и ПЗ-17. Три последних прибора могут быть рекомендованы и для измерения напряженности электрического поля в диапазоне частот 0,01–300 МГц. Для измерения плотности потока энергии электромагнитного поля применяют отечественные приборы ПЗ-9, ПЗ-18, ПЗ-19 и ПЗ-20, которые перекрывают частотный диапазон 0,3–400 ГГц.
Для измерения характеристик лазерного излучения применяются дозиметры типа ИЛД-2М и ЛДМ-2. Первый обеспечивает измерение параметров лазерного излучения в спектральных диапазонах 0,49–1,15 и 2–11 мкм, он дает прямые показания измеряемых параметров при работе на длинах волн 0,53; 0,63; 0,69; 1,06 и 10,6 мкм. На остальных длинах волн (0,49– 1,15 мкм) дозиметр обеспечивает косвенные измерения. Прибор ЛДМ-2 предназначен для определения параметров лазерного излучения в спектральных диапазонах 0,49–1,15 и 2–11 мкм.
Прямые измерения этот дозиметр осуществляет на длинах волн 0,53; 0,63; 0,69; 0,91; 1,06 и 10,6 мкм.
Для индивидуальной защиты от электромагнитного излучения применяют специальные комбинезоны и халаты, изготовленные из металлизированной ткани (экранируют электромагнитные поля), а для защиты от действия лазера обслуживающий персонал должен работать в технологических халатах, изготовленных из хлопчатобумажной или бязевой ткани светло-зеленого или голубого цвета.
Для защиты глаз от воздействия электромагнитного излучения применяют очки марки 3П5-90, стекла которых покрыты диоксидом олова (SnO2), обладающим полупроводниковыми свойствами; марки стекол, применяемых для защиты глаз от воздействия лазерного излучения, представлены в табл. 18.4.
Примечание. ОС – оранжевое стекло; СЗС – сине-зеленое стекло; БС – бесцветное стекло.
Контрольные вопросы
1. Дайте определение понятия «электромагнитное поле».
2. Какими физическими параметрами характеризуется электромагнитное излучение?
3. Какие источники электромагнитных полей вы знаете?
4. Каково действие электромагнитных полей на организм человека?
5. Что такое нормирование электромагнитных полей?
6. Перечислите и охарактеризуйте основные методы защиты от электромагнитных излучений.
7. Как генерируется лазерное излучение?
8. Охарактеризуйте воздействие лазера на организм человека.
9. Как нормируется лазерное излучение?
10. Каковы методы защиты от лазерного излучения?
11. Каковы индивидуальные средства защиты от воздействия электромагнитного и лазерного излучений?
12. Какими приборами измеряют электромагнитное и лазерное излучения?
Игровые модели
Часто возникают ситуации, в которых различные участники имеют не совпадающие между собой интересы. Математические модели и методы для исследования таких так называемых конфликтных ситуаций получили название теории игр [18].
Приведем простейшие понятия и результаты этой теории. Под словом «игра» понимается совокупность правил, руководствуясь которыми игроки-участники принимают решения. Предположим, что результатом игры является плата, которую в соответствии с правилами проигравший участник платит выигравшим. Для простоты ограничимся сначала так называемыми «играми двух лиц с нулевой суммой». Для того чтобы полностью определить такую игру, нужно задать таблицу платежей – платежную матрицу, например, следующую матрицу размера 3х4:
Эта запись означает, что игрок А
выбирает одну из строк этой матрицы, а игрок В,
не зная выбора А, выбирает один из столбцов матрицы. Число на пересечении выбранных строки и столбца определяет выигрыш первого игрока (соответственно проигрыш второго). Например, если А выбрал вторую строку, а В – третий столбец, то А выиграл 5 единиц, а В их проиграл. Если же А выбрал третью строку, а В – второй столбец, то А проиграл 2 единицы, а В их выиграл.
Будем считать, что цель каждого из игроков состоит в максимизации наименьшего возможного выигрыша (соответственно минимизации наибольшего возможного проигрыша). Основной вопрос, возникающий в теории игр: существует ли наилучший способ игры у каждого из игроков, т. е. имеются ли у них оптимальные стратегии.
Прежде чем сформулировать ответ, вернемся к рассматриваемой матрице. Сразу видно, что игроку А
выгоднее всего выбрать первую строку, так как все ее элементы больше соответствующих элементов остальных строк. Точно так же игроку В выгоднее всего выбрать второй столбец, так как все элементы этого столбца меньше соответствующих элементов остальных столбцов. Следовательно, в данном примере оптимальными стратегиями будут следующие: для А – выбор первой строки, а для В – выбор второго столбца.
Число 4, стоящее на пресечении первой строки и второго столбца, носит название цены игры, т. е. платы, которую получает оптимально играющий игрок. Таким образом, в этом примере гарантированный выигрыш А – не менее 4-х единиц и гарантированный проигрыш В – не более 4-х единиц (он равен 4 единицам, если оба игрока играют оптимально).
Если оказывается, что для данной платежной матрицы минимум в какой-либо строке совпадает с максимумом в каком-либо столбце, то эти строка и столбец называются оптимальными, а их пересечение – седловой точкой
платежной матрицы. Соответствующее число и будет ценой игры.
Однако далеко не каждая матрица имеет седловую точку, например, матрица
Аналогично для В соответствующие частоты обозначим через у и (1 –у). Тогда средний выигрыш А, обозначаемый через Е (х, у), равен
Е(х,у)=4(1-х)у+х(1-у)=х+4у-5ху.
(11.17)
Нас интересует величина max min E(x,y). Имеем
x y
Еу=4-5х,
(11.18)
откуда Еу>0
при , Ey=0 при х= и Еу<0 при . Значит,
(график на рис. 11.7). Следовательно,
(11.19)
и оптимальной смешанной стратегией для А будет выбор первой строки с частотой и второй строки – с частотой . Средний проигрыш В, обозначаемый F(x,y),
очевидно равен –Е (х, у). Нас интересует величина где
F(x,y)=5xy-x-4y. (11.20)
Имеем Fx=5y-1, откуда Fx< 0 при , Fx = 0 при y = и Fx>0 при < у ? 1. Значит,
(график на рис. 11.8). Следовательно,
(11.21)
и оптимальной стратегией для А
будет выбор первого столбца с частотой и второго столбца – с частотой .
При оптимальных смешанных стратегиях выигрыш А и соответственно проигрыш В
в пять раз меньше максимально возможного при одиночной игре.
Отметим также, что в рассмотренном примере мы показали существование оптимальных стратегий и установили равенство
; (11.22)
при этом величину Е(х,у) можно трактовать как математическое ожидание выигрыша, а величину v = определить как цену игры.
Рассмотрим теперь общий случай прямоугольной матрицы
.
При любой допустимой стратегии игрока A: x1 ? 0, ...,хm ? 0, x1 +x2+…+xm=1 и любой допустимой стратегии игрока В: y1 ? 0, ...,ym ? 0, y1 +y2+…+ym=1 математическое ожидание выигрыша равно
(11.23)
Множество допустимых стратегий x = (x1,…,xn) игрока А обозначим через X, а множество допустимых стратегий у=(у1,...,yn) игрока В обозначим через Y.
Рассмотренные выше примеры являются частными случаями общих теорем [18] для игр с прямоугольными матрицами (прямоугольными играми); из них, в частности, вытекает:
1. Величины существуют и равны между собой; при этом величина
(11.24)
является ценой игры.
2. Всякая прямоугольная игра имеет цену; каждый игрок в прямоугольной игре всегда имеет оптимальную стратегию.
3. Пусть Е – математическое ожидание выигрыша в прямоугольной игре с матрицей С, имеющей цену v. Тогда для того, чтобы элемент х* =(х1*,...,х*m)Î Х был
оптимальной стратегией для игрока А,
необходимо и достаточно, чтобы для всякого j =1, 2,...,n базисного вектора y(j) = имело место неравенство
v ? E (x*, y(j)). (11.25),
Аналогично для того чтобы элемент у*
=(y*1,...,y*n)ÎY был оптимальной стратегией для игрока В, необходимо и достаточно, чтобы для всякого элемента базисного вектора x(i) = имело место неравенство
E (x(i), y*) ? v. (11.26)
Покажем теперь на двух примерах, как можно применить эти утверждения для вычисления цен и определения оптимальных стратегий для прямоугольных игр. В качестве таких примеров рассмотрим стратегии ловли на удочку и питания рыбы1.
1 Идея примера взята из книги Вильямса [8], которая также может служить хорошим введением в теорию игр.
Представим себе, что существование такого вида рыб, питающихся у поверхности воды, зависит от наличия трех видов летающих насекомых, которые обозначим через т1,т2
и m3
соответственно; насекомые появляются в зоне захвата с частотами 15п, 5п и п
(т. е. насекомых т2 в 5 раз больше чем m3, а насекомых т1 в 3 раза больше чем т2).
Допустим, что рыбак В
ловит рыбу А на насекомых одного из этих видов, насаживая их на крючок. Тогда матрица стратегий С ловли на удочку и питания рыб имеет следующий вид (табл. 11.1):
На основании изложенных утверждений достаточно найти неотрицательные числа х1,х2,х3, y1,y2,y3 и число, удовлетворяющее следующим условиям:
x1+x2+x3=l, y1+y2+y3=1, (11.27)
v ? -2x1, -2y1 ? v,
v ? -6x2, -6у2 ? v,
v ? -30x3, -30у3 ? v.
Заменим последние шесть неравенств на равенства. Тогда имеем
х1=у1=, x2=y2= , x3=у3=.
(11.28)
Подставляя эти значения в равенства (11.27), получим
v =. (11.29)
. (11.30)
(11.31)
Таким образом, цена игры для рыбы будет отрицательной и равной . Она показывает, что в конце концов рыба будет поймана. При этом оптимальная стратегия рыбака совпадает со стратегией питания (также оптимальной) рыбы и оптимальная стратегия уменьшает вероятность поимки рыбы в каждом конкретном случае.
Несколько усложним задачу. Предположим, что рыболов иногда использует приманку т4, которая может быть принята по ошибке за одно из трех насекомых, но которая вдвое чаще вызывает подозрение у рыб. Тогда матрица С стратегий ловли на удочку и питания рыб примет вид табл. 11.2:
Теперь достаточно найти неотрицательные числа х1,х2,х3, y1,y2,y3,y4 и число v, удовлетворяющие следующим условиям:
x1+x2+x3=l, y1+y2+y3+y4=1, (11.27)
v ? -2x1, -y4 –2y1 ? v,
v ? -6x2, -3y4 – 6у2 ? v,
v ? -30x3, -15y4 – 30у3
? v.
v ? -x1 –3x2 –15 x3
Левая система неравенства переопределена, а правая недоопределена ( в левой неизвестных больше, чем неравенств, а в правой меньше). Заметим, что если последнее неравенство в правой колонке
-15y4 –30у3 ? v. будет выполнено при у3=0, то оно будет выполнено и при всех у3>0. Следовательно, полагая у3 = 0, правую систему неравенств можно заменить системой трех линейных уравнений
-y4 –2y1 = v, -3y4 – 6у2 = v, -15y4 – 30у3 = v
с тремя неизвестными y1, у2, у4.
Ее решение, очевидно, имеет вид
Подставляя полученные выражения в равенство (11.32), где у3
=0, получим , т. е. цена игры для рыбы отрицательна и равна
, (11.33)
что несколько меньше, чем в предыдущем случае. Оптимальная стратегия рыбалки имеет вид
(11.34)
Изучим теперь оптимальную стратегию для рыбы, так как у3, = 0, то и x3 = 0, т. е. насекомые m3
слишком опасны для жизни. Тогда из системы четырех неравенств выпадают третье и четвертое, которое при x3
= 0 является следствием двух первых (их полусуммой). Таким образом, для определения x1, х2 и v
имеем систему трех уравнений с тремя неизвестными
x1 + x2 + x3
= 1, v = -2x1, v = -6x2,
откуда
и, с учетом x3
= 0,
(11.35)
Значит, оптимальная стратегия для рыбы равна
(11.36)
цена же ее в силу (11.35) равна , т. е. совпадает с (11.34), что, вообще говоря, вытекает из общей теории.
Модели, основанные на теории игр, представляют собой интересный, но пока еще недостаточно изученный подход к решению стратегических экологических задач. Разработка теории для более сложных игр с ненулевой суммой и игр многих лиц, где между игроками могут создаваться коалиции, должна найти эффективное применение в экологических проектах, связанных с планированием и оценкой различных воздействий на окружающую среду.
Контрольные задания
1. Рассмотрим задачу об «оптимальном рационе» в случае трех продуктов питания (например, хлебные, молочные и мясные продукты) и трех полезных веществ (углеводы, белки, жиры). Ценовой вектор с = (с1, с2, c3) (руб.) примерно равен (10; 20; 50), а вектор b = (b1, b2, b3) минимально необходимого месячного потребления полезных веществ (кг) равен (1,2; 4; 1,5). Будем предполагать также, что матрица имеет вид .
Решить задачу f1(x)= > min при ограничениях Ах ? b, х ? 0.
2. При тех же ограничениях решить задачу f2(x) = х2 > max .
3. Решить двухкритериальную задачу f1(x)>min, f2(x)>max, заменяя ее минимизацией суперкритерия f(x)=?f1(x)-(1-?)f2(x). Рассмотреть случаи .
4. Привести геометрическую интерпретацию задач 1–3.
5. Рассмотреть задачу поиска в случае трех районов и соотношения = 1 : 2 : 3. Найти условия на параметры p1, р2, p3, при которых задача имеет решение в каждом из районов, т.е. t1 = Т, t2=Т, t3 = Т , и в случае, когда время поиска в каждом из районов одно и то же (t1 = t2 = t3 = T/3).
6. Найти оптимальную стратегию рыбака, использующего в качестве наживки мух и живца, если матрица стратегий имеет вид:
7. Найти оптимальную стратегию рыбака, если он дополнительно использует искусственных мух и блесну, а матрица стратегий в этом случае имеет вид:
Источники финансирования природоохранной деятельности
В условиях реструктуризации экономики изменяется и структура финансирования предприятий в части природоохранной деятельности – увеличивается использование средств самого предприятия на решение собственных экологических проблем при сокращении бюджетных ассигнований.
Естественно, в финансировании природоохранной деятельности большую роль играют бюджеты всех уровней. Главное в использовании средств бюджета – участие предприятий в реализации крупных экологических программ федерального, республиканского или муниципального уровней.
Внебюджетное финансирование производится из внебюджетных государственных экологических фондов, система которых создана в 1992 г. Фонды формируются из средств, поступающих от предприятий, учреждений, граждан в качестве платы за загрязнения ОС, штрафов по искам о возмещении вреда и т.д.
Средства экологического фонда распределяются следующим образом: 60% – на реализацию природоохранных мероприятий местного значения; 30% – областного и 10% – федерального. Формирование фондов напрямую зависит от уровня поступления средств за нарушение природоохранной деятельности.
Средства предприятия, используемые на охрану ОС, могут быть получены путем:
· применения более дешевых ресурсов;
· снижения энергетических затрат на единицу продукции;
· внедрения современных ресурсосберегающих технологий;
· экологизации производства, результатом которой является получение экологически чистой продукции, повышающей конкурентоспособность предприятия;
· переработки отходов и т.п.
Важным условием достижения цели экологического менеджмента служит финансовый анализ деятельности предприятия – анализ финансовой рентабельности, потребностей в финансировании и возмещения затрат.
Важнейшим источником средств при экологизации производства является полный учет интересов охраны ОС при разработке проектно-сметной документации.
Главный вопрос – где взять деньги для новейших технологий и выпуска высококачественной продукции? Международный и российский опыт переходной экономики дает шанс получить средства путем:
· приватизации;
· продажи части природных ресурсов;
· сдачи во временную аренду помещений, которые не могут на ближайшую перспективу участвовать в модернизации производства;
· принятия решений лучшими конструкторско-технологическими силами для модернизации предприятия.
Экологизация производства заставляет руководство предприятием искать все возможные варианты сокращения издержек, связанных с давлением на ОС.
Контрольные вопросы
1. Что такое экологический менеджмент?
2. Как вы понимаете термин «устойчивое развитие»?
3. Что такое экологическая безопасность?
4. Как формируются механизмы природопользования в рыночной экономике?
5. Дайте определение рыночных и нерыночных ценностей.
6. Что нового вы видите в оценке стоимости биотических компонентов, предложенной В.Н. Большаковым?
7. Сформулируйте цель экологической экспертизы.
8. Назовите принципы экологического сопровождения хозяйственной деятельности.
9. В чем суть экологического менеджмента на предприятии?
10. Как вы понимаете задачи экологизации экономики в период структурной перестройки?
11. Каковы источники финансирования природоохранной деятельности?
Экологическая безопасность
Концепция устойчивого развития предполагает систему мер по обеспечению экологической безопасности. Экологическая безопасность – состояние защищенности биосферы и человеческого общества, а на государственном уровне – государства от угроз, возникающих в результате антропогенных и природных воздействий на ОС. В понятие экологической безопасности входит система регулирования и управления, позволяющая прогнозировать, не допускать, а в случае возникновения – ликвидировать развитие чрезвычайных ситуаций [13].
Экологическая безопасность реализуется на глобальном, региональном и локальном уровнях.
Глобальный уровень управления экологической безопасностью предполагает прогнозирование и отслеживание процессов в состоянии биосферы в целом и составляющих ее сфер. Во второй половине XX в. эти процессы выражаются в глобальных изменениях климата, возникновении «парникового эффекта», разрушении озонового экрана, опустынивании планеты и загрязнении Мирового океана. Суть глобального контроля и управления – в сохранении и восстановлении естественного механизма воспроизводства ОС биосферой, который направляется совокупностью входящих в состав биосферы живых организмов.
Управление глобальной экологической безопасностью является прерогативой межгосударственных отношений на уровне ООН, ЮНЕСКО, ЮНЕП и других международных организаций. Методы управления на этом уровне включают принятие международных актов по защите ОС в масштабах биосферы, реализацию межгосударственных экологических программ, создание межправительственных сил по ликвидации экологических катастроф, имеющих природный или антропогенный характер.
На глобальном уровне был решен ряд экологических проблем международного масштаба. Большим успехом международного сообщества стало запрещение испытаний ядерного оружия во всех средах, кроме пока подземных испытаний. Достигнуты соглашения о мировом запрете китобойного промысла и правовом межгосударственном регулировании вылова рыбы и других морепродуктов. Заведены международные Красные книги с целью сохранения биоразнообразия.
Силами мирового сообщества проводится изучение Арктики и Антарктики как естественных биосферных зон, не затронутых вмешательством человека, для сравнения с развитием зон, преобразованных человеческой деятельностью. Международным сообществом принята Декларация о запрещении производства хладагентов-фреонов, способствующих разрушению озонового слоя (Монреаль, 1972).
Региональный уровень включает крупные географические или экономические зоны, а иногда территории нескольких государств. Контроль и управление осуществляются на уровне правительства государства и на уровне межгосударственных связей (объединенная Европа, СНГ, союз африканских государств и т.д.).
На этом уровне система управления экологической безопасностью включает:
· экологизацию экономики;
· новые экологически безопасные технологии;
· выдерживание темпов экономического развития, не препятствующих восстановлению качества ОС и способствующих рациональному использованию природных ресурсов.
Локальный уровень включает города, районы, предприятия металлургии, химической, нефтеперерабатывающей, горнодобывающей промышленности и оборонного комплекса, а также контроль выбросов, стоков и др. Управление экологической безопасностью осуществляется на уровне администрации отдельных городов, районов, предприятий с привлечением соответствующих служб, ответственных за санитарное состояние и природоохранную деятельность.
Решение конкретных локальных проблем определяет возможность достижения цели управления экологической безопасностью регионального и глобального уровней. Цель управления достигается при соблюдении принципа передачи информации о состоянии ОС от локального к региональному и глобальному уровням.
Независимо от уровня управления экологической безопасностью объектами управления обязательно являются окружающая природная среда, т. е. комплекс естественных экосистем, и социоприродные экосистемы. Именно поэтому в схеме управления экологической безопасностью любого уровня обязательно присутствует анализ экономики, финансов, ресурсов, правовых вопросов, административных мер, образования и культуры.
Экологические правонарушения
Понятие и состав экологических правонарушений. Правонарушение представляет собой юридический факт, порождающий охранительное правоотношение.
Специфика правонарушения, совершенного в области природопользования и охраны окружающей среды, определяет его как экологическое правонарушение и заключается в том, что:
· объектом экологического правонарушения выступают общественные отношения в сфере рационального природопользования и охраны окружающей среды;
· экологическое правонарушение представляет собой противоправное деяние, совершенное путем действия (например, незаконная порубка и повреждение деревьев и кустарников) или бездействия (невыполнение правил охраны недр);
· вина является третьим признаком состава правонарушения в формах умысла и неосторожности. Например, незаконная охота (ст. 258 УК) может быть совершена только с прямым умыслом, уничтожение лесных массивов в результате неосторожного обращения с огнем – только по неосторожности (ст. 261 УК РФ);
· субъектом экологического правонарушения могут быть граждане и юридические лица.
В ст. 81 Закона РСФСР «Об охране окружающей природной среды» экологическое правонарушение определяется как виновное, противоправное деяние, нарушающее природоохранительное законодательство и причиняющее вред окружающей природной среде и здоровью человека. С учетом степени общественной опасности экологические правонарушения подразделяются на проступки и преступления.
В ст. 42 Конституции РФ записано, что «каждый имеет право на благоприятную окружающую среду, достоверную информацию о ее состоянии и на возмещение ущерба, причиненного его здоровью или имуществу экологическим правонарушением». Право на благоприятную окружающую среду представляет собой: во-первых, нравственный принцип, выраженный в правовой норме Конституции; во-вторых, принцип для построения системы объективного экологического законодательства, а также его важнейшую норму; в-третьих, это субъективное право гражданина, которому корреспондируют обязанности государства по поддержанию окружающей среды в благоприятном состоянии, а также проведению различных мероприятий по устранению отрицательных воздействий неблагоприятной среды на человека.
Виды вреда, причиняемого окружающей природной среде. В соответствии со ст. 86 Закона от 9 декабря 1991 г. вред окружающей природной среде может быть причинен юридическими лицами и гражданами загрязнением окружающей среды, порчей, уничтожением, повреждением, нерациональным использованием природных ресурсов, разрушением естественных экосистем и Другими экологическими правонарушениями. Под вредом понимается реальный ущерб и упущенная выгода. Реальный ущерб в экологической сфере может выражаться в уменьшении лесных массивов, снижении плодородия почвы и т.д., а также в расходах на их восстановление. Упущенная выгода в экологической сфере может выражаться в неполученных доходах, например, от хозяйственного использования той почвы, плодородие которой снизилось.
Вред окружающей среде (с точки зрения последствий) может быть как экономический (гибель лесного массива, предназначенного к вырубке и продаже), так и экологический (нарушение экологических интересов общества в части благоприятной среды). Между собой эти виды вреда органически связаны как источником, так и способом причинения и рассматриваются в денежном выражении. Но в отличие от экономического вред экологический более длителен в своем проявлении и последствия его могут быть растянуты во времени и в пространстве. Этот вред не всегда может быть возмещен в натуре, не всегда оценим в денежном выражении. Поэтому огромное значение имеет превентивная работа по предупреждению наступления вреда.
Вред окружающей среде может быть причинен как правомерными действиями (разрешенными государством), так и вследствие нарушения экологического законодательства. Соответственно правомерный вред (объективно вынужденный) должен быть возмещен только в случаях, прямо предусмотренных законодательством. Эколого-правовая ответственность за неправомерный вред наступает только в случае, когда он является прямым следствием нарушения экологического законодательства.
Экологический аудит в системе маркетинга
Экологический аудит –
это проведение ревизии экологической деятельности (экологичности) компаний. Концепция экологического аудита, разработанная в конце 70-х годов в США, впервые использовалась на практике для проверки соблюдения компаниями экологических требований законов, законодательных актов и нормативов. Экологический аудит включает проверку следующих видов деятельности:
· выполнение экологических нормативов в соответствии с законодательством и внутрифирменными требованиями;
· определение уровня экологичности компании (проводится в случае, если данная компания не имеет официально принятых планов или программ в области окружающей среды);
· функционирование системы экоуправления;
· получение экологического сертификата;
· выполнение финансовых обязательств и выплата долгов, правильность определения уровня рисков при слиянии и приобретении компаний;
· составление экологической декларации и отчетов компании об экологической деятельности.
Экологический аудит представляет собой комплексный, документированный верификационный процесс объективного выявления и оценки сведений для определения соответствия критериям проверки конкретных экологических мероприятий, видов деятельности, условий, управленческих систем или информации о них и информирования потребителя о полученных в ходе указанного процесса результатах. Международные стандарты ИСО по экологическому аудиту включают методические материалы по принципам экологического аудита (ISO 14010), процедуре аудита систем экологического управления (ISO 14011.1) и квалификационные требования к специалистам по экологическому аудиту.
Для создания маркетинговой системы важно, чтобы экологический аудит рассматривался в качестве особого управленческого инструмента и составной части систем экоуправления. Проводится он обычно экспертами-консультантами по заданию властных структур (проверка выполнения экологических положений законов и эконорм), банков или страховых компаний (при принятии ими решений о предоставлении кредитов, ссуд или страхового полиса) и, наконец, частных компаний (при слияниях или приобретениях компаний).
Итоги проверки могут быть весьма неожиданными: высокие штрафы или временное принудительное закрытие. Результаты экологического аудита могут служить источником маркетинговой информации об экологических аспектах деятельности компании, причем эта информация исключительно важна для принятия последующих управленческих решений.
Эффективность внедрения в компании экологических мероприятий и систем экологического управления выражается в прямых выгодах, которые связаны с возможностью расширить рынок сбыта продукции, избежать ненужных расходов, снизить издержки, сберечь основные фонды, получить нужные инвестиции, и в косвенных,
включающих улучшение мотивации сотрудников компании, отношений с местным населением, репутации компании.
Некоторые иностранные партнеры по совместным предприятиям, стремясь приспособиться к характеру деловых отношений в нашей стране, в том числе к бытующей практике нарушения природоохранных норм, не соблюдают законодательные положения в области охраны окружающей среды. Это касается, например, нефтяной, нефтехимической, металлургической и горнодобывающей промышленности. В этой связи вырастает роль экологического аудита и экологической отчетности.
В России значительные возможности для становления отрасли экологических услуг (аудит и страхование) возникли с развитием частного сектора. В стране преобладают малые предприятия, причем 20% из них – компании промышленного и строительного профиля, которые могут оказывать существенное влияние на окружающую среду. Иными словами, примерно 250 тыс. компаний нуждаются в проведении экоаудита.
Сотрудничество в области развития экологически приемлемого предпринимательства предполагает:
· изучение опыта западных компаний, западного и международного законодательства;
· подготовку кадров экологически ориентированных предпринимателей;
· формирование кадров, т.е. специалистов по созданию систем управления экологической деятельностью компаний;
· проведение экоаудита.
Контрольные вопросы
1. Перечислите основные маркетинговые направления в области формирования рынка экологических услуг.
2. Почему в России в переходный к рынку период ухудшилось состояние окружающей природной среды?
3. Дайте характеристику основных групп методов, составляющих сущность маркетингового механизма управления окружающей природной средой.
4. Какова структура комплексной системы маркетинговых мер, необходимых для решения экологических проблем?
5. Раскройте сущность маркетинговых подходов к регулированию природопользования.
6. Каковы перспективы развития системы экологического страхования?
7. Каковы задачи экологического аудита?
Экологический менеджмент на предприятии
Экологический менеджмент на предприятии – это система управленческих рычагов, обеспечивающая эффект в области допустимых темпов экономического развития в рамках допустимого давления на ОС [13].
Выделим следующие три стадии экологического менеджмента.
· Выбор. На этой стадии при решении о строительстве нового предприятия, реконструкции или модернизации старого необходимо соблюдение принципа экологизации экономики производства. Здесь предусматривается разработка схемы безопасности продукции всего жизненного цикла.
· Моментальный анализ подразумевает моментальное тестирование выбираемой модели производства из многочисленных вариантов уже имеющихся проектов. Моментальный анализ – это таблица или матрица с набором соответствующих параметров, анализ которых (в баллах) позволит сделать предварительный выбор направления дальнейшей деятельности по созданию, реконструкции или модернизации.
· На предпроектной стадии данные моментального анализа преобразуются в программу действий по формированию экологического бизнес-плана. Бизнес-план исследует сильные и слабые стороны предприятия, а также открывающиеся возможности и опасности.
Важнейшая задача экологического менеджмента состоит в предотвращении угрозы для ОС, в возможности роста предприятия. Принцип менеджера-эколога заключен в девизе: затраты на ОС должны окупаться!
Выгодность рационального и сбалансированного природопользования для предприятия реализуется через экономические выгоды: а) снижение издержек в результате экономии природных ресурсов, рециркуляции, переработки отходов, снижение платежей за штрафы; б) рост доходов за счет «зеленых» товаров, конкуренции, новых рынков сбыта; стратегические выгоды: имидж предприятия, рост производительности труда, выполнение экологических требований без излишнего напряжения.
Экологическое сопровождение хозяйственной деятельности
Экологическая ситуация в России настоятельно требует перехода от дискретного к непрерывному процессу учета экологического фактора в процессе жизнедеятельности общества в рамках сохранения качества ОС. При этом предусматривается оценка воздействия на окружающую среду (ОВОС) и подготовка экологических разделов в рамках ТЭО или проектов, экологическая экспертиза, послепроектный анализ, экологический аудит, экологическая сертификация и лицензирование использования природных ресурсов, экологическое страхование и др. [13].
Рассмотрим этапы экологического сопровождения хозяйственной деятельности (ЭСХД).
Этап А. Планирование и согласование планов реализации деятельности. Здесь разрабатывается и утверждается предпроектная и проектная документация на право осуществления планируемой деятельности. Этап предусматривает проведение ОВОС.
Этап Б. Создание материальных объектов планируемой деятельности, обеспечивающих ее реализацию (строительство зданий, машин и механизмов). Этап предусматривает мониторинг ОС.
Этап В. Осуществление планируемой деятельности, происходящее: в штатном режиме (этап В1); во внештатном режиме (аварии, технологические сбои и т.д.) – этап В2. Предусматриваются мероприятия по локализации экологического ущерба, экологический аудит для определения причин возникновения нештатной ситуации.
Этап Г. Прекращение деятельности. Ликвидация должна сопровождаться проведением экологического мониторинга и аудита.
Экологическое сопровождение хозяйственной деятельности включает в себя:
· ЭСХД в приватизации. В Государственной программе приватизации государственных и муниципальных предприятий в РФ указывается порядок учета экологического фактора, условий безопасного ведения работ на химически опасных, взрыво-, пожаро- и токсикоопасных объектах. Предусматриваются экологический аудит, планы приватизации, требования по экологической санации предприятий;
· ЭСХД в инвестиционной деятельности. При оценке целесообразности инвестирования в тот или иной проект финансовые организации обязательно рассматривают экологическую составляющую данного проекта. С 1984 г. Всемирный банк требует проведения экологической оценки финансируемых им проектов. Европейский банк реконструкции и развития также имеет аналогичные процедуры. В процедуре обоих банков проведение экологической оценки инвестиционного проекта и подготовка соответствующей документации есть обязанность тех, кто предлагает данный проект для инвестирования.
Экологический менеджмент предполагает, что предприятие и его продукция определяют структурную связь между ними и ОС. Если предприятия не станут экологически безопасными, то проблема экологической безопасности не сможет быть решена.
Совокупность управленческих, технологических, финансово-экономических мероприятий, направленных на снижение давления предприятий на ОС (в рамках восстановления ее качеств) при сохранении целей производства, составляет экологизацию экономики.
Классификация чрезвычайных ситуаций
Существуют различные классификации чрезвычайных ситуаций. Наиболее часто за основание классификации выбирают характер возникновения (генезис) чрезвычайной ситуации. Очень часто чрезвычайные ситуации характеризуются в отношении их преднамеренности. При таком подходе вся совокупность рассматриваемых ситуаций распадается на два больших типа: преднамеренные и непреднамеренные чрезвычайные ситуации. Происхождение чрезвычайной ситуации может также рассматриваться в отношении ее естественности. При этом подходе все чрезвычайные ситуации подразделяются на три типа: искусственного происхождения, или антропогенные (включая техногенные), естественного
(природные) и смешанного происхождения, или природно-антропогенные. В табл. 25.2 представлены типы чрезвычайных ситуаций. В основание их классификации положены такие признаки, как преднамеренность и естественность.
При классификации по признаку «преднамеренность» вся совокупность рассматриваемых ситуаций распадается на два больших типа: преднамеренные и непреднамеренные чрезвычайные ситуации. В первый из названных типов входят социально-политические конфликты, а в последний – три класса чрезвычайных ситуаций (стихийные бедствия, техногенные (технологические) катастрофы и «комбинированные» чрезвычайные ситуации).
Если за основу классификации берется признак «естественность», то антропогенные чрезвычайные ситуации включают в себя социально-политические конфликты и техногенные катастрофы, второй тип (природные чрезвычайные ситуации) включает стихийные бедствия и, наконец, последний – класс чрезвычайных ситуаций «комбинированного» возникновения.
Важная характеристика чрезвычайных ситуаций – темпы их формирования (развития). По продолжительности (от непосредственной причины возникновения чрезвычайной ситуации до ее кульминационной точки) все ситуации можно разделить на «взрывные» и «плавные». Продолжительность развития чрезвычайных ситуаций первого типа составляет от нескольких секунд до нескольких часов.
Примером таких экстремальных ситуаций могут служить стихийные бедствия и некоторые виды техногенных катастроф (аварии на крупных АЭС, ТЭС, газо- и нефтепроводах, а также на химических предприятиях).
Продолжительность развития чрезвычайных ситуаций второго типа может исчисляться несколькими десятилетиями. Такая ситуация возникла в 1978 г. в районе канала Лав (г. Ниагара-Фоле, США). С 1942 по 1953 гг. филиал известной нефтехимической корпорации «Оксидентал Петролеум» производил захоронение опасных отходов, содержащих диоксин и еще примерно 200 ядовитых веществ. Спустя четверть века они просочились на поверхность, попали в водопроводную сеть и создали серьезную угрозу здоровью и жизни населения. 1 августа 1978 г. президент США Д. Картер объявил «национальную чрезвычайную ситуацию» – население города было эвакуировано.
По масштабу распространения чрезвычайные ситуации классифицируют на: локальные (объектные), местные, региональные, национальные и глобальные. В понятие масштаба распространения входят не только размеры территории, на которой возникла чрезвычайная ситуация, но и ее косвенные последствия (нарушение связи, систем водоснабжения и водоотведения, необходимость ремонта или разборки поврежденных зданий и сооружений и др.), а также тяжесть этих последствий, которую оценивают по затрате сил и ресурсов, привлеченных для ликвидации чрезвычайных ситуаций.
Локальные
чрезвычайные ситуации возникают на отдельных объектах народного хозяйства (предприятиях, промышленных очистных сооружениях, складах и хранилищах и др.). Последствия чрезвычайных ситуаций на этих объектах устраняются собственными силами и за счет своих ресурсов.
К местным чрезвычайным ситуациям относят такие, которые возникли в населенном пункте, городе, в одном или нескольких районах, а также в пределах области. Устранение их последствий производится с привлечением ресурсов области.
Региональные
чрезвычайные ситуации занимают территорию нескольких областей или экономического района; национальные – охватывают территорию нескольких экономических районов, но не выходят за пределы государства; глобальные
чрезвычайные ситуации распространяются и на другие государства. Соответственно устранение перечисленных последствий осуществляется за счет субъектов Российской Федерации, государства в целом или международного сообщества (при глобальных чрезвычайных ситуациях).
Локальная чрезвычайная ситуация при известных условиях вполне может перерасти в региональную, национальную или глобальную. При этом важно установить конкретный тип критерия или параметр, согласно которому возникшая обстановка относится к тому или иному типу чрезвычайной ситуации.
В качестве примеров рассмотрим две самые крупные техногенные катастрофы за всю мировую историю развития энергетики и промышленности.
Крупнейшая ядерная авария произошла 26 апреля 1986 г. в Чернобыле на Украине. В результате последовательных ошибок, допущенных операторами ядерного реактора, в нем начал накапливаться водяной пар. Он реагировал с находящимся в реакторе горячим цирконием и образовывался водород. Давление водорода в активной зоне реактора нарастало, что привело в конечном итоге к разрушению верхней части реактора. При соприкосновении с воздухом газообразная смесь взорвалась и от возникшего пламени загорелся графитовый замедлитель. Этот замедлитель продолжал гореть несколько дней. Радиоактивные вещества, находящиеся в реакторе, попали в атмосферу и образовали радиоактивное облако. Размеры этого облака составляли 30 км в ширину и приблизительно 100 км в длину. Распространившись затем на большое расстояние, это облако вызвало радиоактивное заражение местности. Зона существенного загрязнения местности (с уровнем загрязнения более 5 мр/ч) составила около 3000 км2. Несколько десятков человек погибло в результате аварии. Отмечены также многочисленные случаи заболевания лучевой болезнью. Свыше 100 000 человек, проживавшие в радиусе 30 км от реактора, пришлось эвакуировать вскоре после аварии.
Крупнейшая химическая авария произошла на заводе по изготовлению пестицидов в г. Бхопале (Индия) 2 декабря 1984 г. Этот завод – дочернее предприятие американской фирмы «Юнион Карбайд» – производил пестицид севин (С10Н7ООСNНСН3).
При его производстве использовалось промежуточное ядовитое соединение (полупродукт) – метилизоцианат.
В результате технической неисправности (поломки предохранительного клапана) одного из резервуаров, в котором хранился метилизоцианат, его ядовитые пары попали в атмосферу. По оценкам, в воздух попало приблизительно 3 т газа, от воздействия которого более 2500 человек погибли, а общее число пораженных отравляющим веществом, которым была оказана медицинская помощь, достигло 90000.
Эти техногенные катастрофы в Бхопале и Чернобыле по технико-экономическому критерию можно отнести к локальной чрезвычайной ситуации, по экономическому – к национальной, а по социально-политическому, имея в виду международный резонанс, а также по социально-экологическому (крупнейшие катастрофы за всю мировую историю индустрии и энергетики) – к глобальной чрезвычайной ситуации.
Представленные в табл. 25.2 «прочие техногенные катастрофы» в отечественной литературе часто называют экологическими.
В Законе РФ об окружающей среде используется термин катастрофической экологической обстановки в регионе, под которым понимают высшую степень экологического неблагополучия в каком-либо регионе страны. Регион, в котором сложилась катастрофическая экологическая ситуация, в соответствии с указанным Законом носит название зоны экологического бедствия. Зоны экологического бедствия – это участки территории Российской Федерации, где в результате хозяйственной или иной деятельности происходят устойчивые отрицательные изменения в окружающей природной среде, угрожающие здоровью населения, состоянию естественных экологических систем, генетических фондов растений и животных. В зоне экологического бедствия окружающая природная среда претерпевает глубокие необратимые изменения, наблюдается существенное ухудшение здоровья населения, увеличивается общая и детская смертность.
Классификация мониторинга
Мониторинг включает в себя следующие основные практические направления:
· наблюдение за состоянием окружающей среды и факторами, воздействующими на нее;
· оценку фактического состояния окружающей среды и уровня ее загрязнения;
· прогноз состояния окружающей среды в результате возможных загрязнений и оценку этого состояния.
Объектами мониторинга являются атмосфера (мониторинг приземного слоя атмосферы и верхней атмосферы); атмосферные осадки (мониторинг атмосферных осадков); поверхностные воды суши, океаны и моря, подземные воды (мониторинг гидросферы); криосфера (мониторинг составляющих климатической системы).
По объектам наблюдения различают: атмосферный, воздушный, водный, почвенный, климатический мониторинг, мониторинг растительности, животного мира, здоровья населения и т.д.
Существует классификация систем мониторинга по факторам, источникам и масштабам воздействия (рис. 2.2 и табл. 2.2).
Мониторинг факторов воздействия –
мониторинг различных химических загрязнителей (ингредиентный мониторинг) и разнообразных природных и физических факторов воздействия (электромагнитное излучение, солнечная радиация, шумовые вибрации).
Мониторинг источников загрязнений –
мониторинг точечных стационарных источников (заводские трубы), точечных подвижных (транспорт), пространственных (города, поля с внесенными химическими веществами) источников.
По масштабам воздействия мониторинг бывает пространственным и временным.
По характеру обобщения информации различают следующие системы мониторинга:
• глобальный – слежение за общемировыми процессами и явлениями в биосфере Земли, включая все ее экологические компоненты, и предупреждение о возникающих экстремальных ситуациях;
• базовый (фоновый) –
слежение за общебиосферными, в основном природными, явлениями без наложения на них региональных антропогенных влияний;
• национальный –
мониторинг в масштабах страны;
• региональный – слежение за процессами и явлениями в пределах какого- то региона, где эти процессы и явления могут отличаться и по природному характеру, и по антропогенным воздействиям от базового фона, характерного для всей биосферы;
• локальный – мониторинг воздействия конкретного антропогенного источника;
• импактный – мониторинг региональных и локальных антропогенных воздействий в особо опасных зонах и местах.
Классификация систем мониторинга может основываться и на методах наблюдения (мониторинг по физико-химическим и биологическим показателям, дистанционный мониторинг).
Химический мониторинг
– это система наблюдений за химическим составом (природного и антропогенного происхождения атмосферы, осадков, поверхностных и подземных вод, вод океанов и морей, почв, донных отложений, растительности, животных и контроль за динамикой распространения химических загрязняющих веществ. Глобальной задачей химического мониторинга является определение фактического уровня загрязнений окружающей среды приоритетными высокотоксичными ингредиентами, представленными в табл. 2.1.
Примечание: И- импактный, Р - региональный, Б - базовый, Г – глобальный.
Физический мониторинг –
система наблюдений за влиянием физических процессов и явлений на окружающую среду (наводнения, вулканизм, землетрясения, цунами, засухи, эрозия почв и т.д.).
Биологический мониторинг –
мониторинг, осуществляемый с помощью биоиндикаторов (т. е. таких организмов, по наличию, состоянию и поведению которых судят об изменениях в среде).
Экобиохимический мониторинг –
мониторинг, базирующийся на оценке двух составляющих окружающей среды (химической и биологической).
Дистанционный мониторинг –
в основном, авиационный, космический мониторинг с применением летательных аппаратов, оснащенных радиометрической аппаратурой, способной осуществлять активное зондирование изучаемых объектов и регистрацию опытных данных.
В зависимости от принципа классификации имеются различные системы мониторинга (табл. 2.2).
Наиболее универсальным является комплексный экологический мониторинг окружающей среды.
Комплексный экологический мониторинг
окружающей среды – это организация системы наблюдений за состоянием объектов окружающей природной среды для оценки их фактического уровня загрязнения и предупреждения о создающихся критических ситуациях, вредных для здоровья людей и других живых организмов. Различают мониторинг локальный, региональный и фоновый.
При проведении комплексного экологического мониторинга окружающей среды: а) проводится постоянная оценка экологических условий среды обитания человека и биологических объектов (растений, животных, микроорганизмов и т.д.), а также оценка состояния и функциональной целостности экосистем; б) создаются условия для определения корректирующих действий в тех случаях, когда целевые показатели экологических условий не достигаются.
Система комплексного экологического мониторинга предусматривает:
· выделение объекта наблюдения;
· обследование выделенного объекта наблюдения;
· составление для объекта наблюдения информационной модели;
· планирование измерений;
· оценку состояния объекта наблюдения и идентификацию его информационной модели;
· прогнозирование изменения состояния объекта наблюдения;
· представление информации в удобной для использования форме и доведение ее до потребителя.
Основные цели комплексного экологического мониторинга состоят в том, чтобы на основании полученной информации:
1) оценить показатели состояния и функциональной целостности экосистем и среды обитания человека (т. е. провести оценку соблюдения экологических нормативов);
2) выявить причины изменения этих показателей и оценить последствия таких изменений, а также определить корректирующие меры в тех случаях, когда целевые показатели экологических условий не достигаются (т.е. провести диагностику состояния экосистем и среды обитания);
3) создать предпосылки для определения мер по исправлению возникающих негативных ситуаций до того, как будет нанесен ущерб, т. е. обеспечить заблаговременное предупреждение негативных ситуаций.
В Российской Федерации функционирует несколько ведомственных систем мониторинга, например, служба наблюдения за загрязнением окружающей среды Росгидромета, служба мониторинга водных ресурсов Роскомвода, служба агрохимических наблюдений и мониторинга загрязнений сельскохозяйственных земель Роскомзема и др.
Комплексная схема системного анализа
Поскольку системный анализ представляет собой определенный способ мышления, то перечень этапов должен рассматриваться как некое руководство к действию. Цель такого многоэтапного подхода состоит в том, чтобы помочь выбрать правильную стратегию для решения практических экологических задач. А задачи эти, как правило, крайне сложны, поэтому использование ЭВМ является характерной особенностью современных системных исследований.
Структура системного анализа направлена на то, чтобы сосредоточить главные усилия на сложных и, как правило, крупномасштабных проблемах, не поддающихся решению более простыми исследованиями, например, наблюдением или простым экспериментированием. Комплексная схема системного анализа приведена на рис. 12.2.
Если мы вернемся к предыдущим параграфам данной главы, то без труда обнаружим элементы этой схемы при рассмотрении тех или иных подходов, например, установление иерархии целей в задаче об оптимальном рационе питания, анализ чувствительности в задачах динамики популяции и необходимость в связи с этим рассмотрения стохастических моделей, оценки возможных и выбор оптимальных стратегий и т.д.
Тем не менее ряд вопросов не нашел отражения в предыдущих параграфах. А именно, все экологические воздействия – динамические, т. е. зависят от времени и постоянно изменяются. Более того, взаимодействия часто имеют особенность, называемую в технике «обратной связью», т. е. характеризуются тем, что некоторые эффекты процесса возвращаются к своему источнику, в результате чего эти эффекты усиливаются или видоизменяются. Обратные связи бывают положительными (усиление эффекта) или отрицательными (ослабление эффекта). С моделями такого типа познакомимся далее.
Концепция экосистемы
Термин «экология» (от греч. «Ойкос» – дом, жилище и «логос» – наука) был предложен более 100 лет назад выдающимся немецким естествоиспытателем Эрнстом Геккелем.
В буквальном смысле экология –
это наука об условиях существования живых организмов, их взаимодействиях между собой и окружающей средой.
Экология – также междисциплинарное системное научное направление [27, 32]. Возникнув на почве биологии, оно включает в себя концепции, технологии математики, физики, химии. Но экология и гуманитарная наука, поскольку от поведения человека, его культуры во многом зависит судьба биосферы, а вместе с ней и человеческой цивилизации.
В зависимости от специфики решаемых экологических задач существуют ее разнообразные прикладные направления: инженерная, медицинская, химическая, космическая экология, агроэкология, экология человека и т.д.
Что является предметом исследования экологии? Экология изучает организацию и функционирование живых систем более сложных, чем организм, т. е. надорганизменных систем. Эти системы получили название экологических систем или экосистем.
Экосистема – это безразмерная устойчивая система живых и неживых компонентов, в которой совершается внешний и внутренний круговорот вещества и энергии [27]. В качестве примеров можно привести лесные экосистемы, почвы, гидросферу и т.д.
Самой крупной экосистемой, предельной по размерам и масштабам, является биосфера. Биосферой называют активную оболочку Земли, включающую все живые организмы Земли и находящуюся во взаимодействии с неживой средой (химической и физической) нашей планеты, с которой они составляют единое целое. Биосфера нашей планеты существует 3 млрд. лет, она растет и усложняется наперекор тенденциям холодной энтропийной смерти; она несет разумную жизнь и цивилизацию. Биосфера существовала задолго до появления человека и может обойтись без него. Напротив, существование человека невозможно без биосферы.
Все остальные экосистемы находятся внутри биосферы и являются ее подсистемами. Крупная региональная экосистема, характеризующаяся каким-либо основным типом растительности, называется биомом.
Например, биом пустыни или влажного тропического леса. Гораздо меньшей системой является популяция, включающая группу особей одного вида, т. е. единого происхождения, занимающая определенный участок. Более сложной системой, чем популяция, является сообщество, которое включает все популяции, занимающие данную территорию. Таким образом, популяция, сообщество, биом, биосфера располагаются в иерархическом порядке от малых систем к крупным.
Важное следствие иерархической организации состоит в том, что по мере объединения компонентов в более крупные функциональные единицы на новых ступенях иерархической лестницы возникают новые свойства, отсутствующие на предыдущих ступенях. Эти свойства нельзя предсказать исходя из свойств компонентов, составляющих новый уровень. Этот принцип получил название эмерджентности. Суть его: свойства целого невозможно свести к сумме свойств его частей.
Например, водород и кислород, находящиеся на атомарном уровне, при соединении образуют молекулу воды, обладающую уже совершенно новыми свойствами. Другой пример. Некоторые водоросли и кишечно-полостные образуют систему коралловых рифов. Огромная продуктивность и разнообразие коралловых рифов – эмерджентные свойства, характерные только для рифового сообщества, но никак не для его компонентов, живущих в воде с низким содержанием биогенных элементов.
Деятельность организмов в экосистеме приспосабливает геохимическую среду к своим биологическим потребностям. Тот факт, что химический состав атмосферы и сильно забуференная физическая среда Земли резко отличаются от условий на любой другой планете Солнечной системы, позволил сформулировать гипотезу Геи [49]. Согласно этой гипотезе именно живые организмы создали и поддерживают на Земле благоприятные для жизни условия. В табл. 1.1 представлен сравнительные анализ состава атмосферы Земли, Марса, Венеры, а также гипотетической атмосферы, которая имелась на Земле до появления жизни.
Скорее всего, зеленые растения и некоторые микроорганизмы сыграли основную роль в формировании земной атмосферы с ее высоким содержанием кислорода и низким содержанием углекислого газа.
Гипотеза Геи подчеркивает важность изучения и сохранения этих регулирующих механизмов, которые позволяют атмосфере приспосабливаться к загрязнениям, обусловленным деятельностью человека.
В состав экосистемы входят следующие компоненты:
· неорганические вещества (С, О2, N2, P, S, СО2, Н2О и др.), которые включаются в круговороты веществ;
· органические соединения (белки, углеводы, липиды и др.), связывающие биотическую (живую) и абиотическую (неживую) компоненты экосистемы;
· воздушная, водная и субстратная среды, включающие климатический режим и другие физические факторы;
· продуценты, автотрофные (самопитающиеся) организмы, в основном зеленые растения, которые, используя энергию солнечного света, синтезируют органические вещества из углекислого газа и воды;
· консументы первого порядка (растительноядные животные) и второго порядка (хищники), гетеротрофные организмы, в основном животные, питающиеся другими организмами;
· редуценты или деструкторы, в основном бактерии и грибы, живущие за счет разложения тканей умерших организмов.
Образование органических веществ зелеными растениями при использовании энергии солнечного света происходит в процессе фотосинтеза:
У зеленых растений Н2О окисляется с образованием газообразного кислорода О2, при этом СО2
восстанавливается до органических веществ (в приведенном уравнении органическое вещество – глюкоза). У фотосинтезирующих бактерий синтезируются органические вещества, но не образуется кислород. Дыхание - процесс, обратный фотосинтезу, при котором органические вещества окисляются с помощью атмосферного кислорода.
Редуценты, разлагая отмершие остатки организмов, освобождают биогенные элементы (С, О2, N2, P, S и др.), которые поступают в круговорот, необходимый для существования экосистем.
Каждый год продуцентами на Земле создается около 100 млрд.
т. органического вещества, что составляет глобальную продукцию биосферы. За этот же промежуток времени приблизительно такое же количество живого вещества, окисляясь, превращается в СО2 и H2O в результате дыхания организмов. Этот процесс называется глобальным распадом. Но этот баланс существовал не всегда. Примерно 1 млрд. лет назад часть образуемого продуцентами вещества не расходовалась на дыхание и не разлагалась, так как в биосфере еще не было достаточного числа консументов. В результате этого органическое вещество сохранялось и задерживалось в осадках. Преобладание синтеза органических веществ над их разложением привело к уменьшению в атмосфере Земли углекислого газа и накоплению кислорода. Около 300 млн. лет назад особенно большой избыток органической продукции привел к образованию горючих ископаемых, за счет которых человек позже совершил промышленную революцию. А более чем 60 млн. лет назад выработалось колеблющееся стационарное соотношение между глобальной продукцией и распадом.
Однако за последние полвека в результате хозяйственной деятельности человека, связанной главным образом со сжиганием горючих ископаемых, концентрация СО2 в атмосфере повысилась, а О2 – уменьшилась, что создает критическую ситуацию для устойчивости атмосферы. Таким образом, важнейшей характеристикой экосистем является круговорот веществ, определяемый глобальной продукцией и распадом.
Следующей важнейшей характеристикой экосистем является их кибернетическое поведение. Кибернетическое поведение экосистем определяется тем, что они обладают развитыми информационными сетями, включающими потоки физических и химических сигналов, которые связывают все части экосистемы и управляют ею как единым целым. Отличие экосистем от кибернетических устройств, созданных человеком, заключается в том, что управляющие функции экосистемы сосредоточены внутри нее и диффузны. В кибернетических же системах, созданных человеком, управляющие функции направлены вовне и специализированы.
При сравнении кибернетической системы с экосистемой можно найти нечто общее.
В той и другой управление основано на обратной связи. Известно, что энергия обратной связи крайне мала по сравнению с инициируемой ею энергией, которая возбуждается в системе, идет ли речь о техническом устройстве, организме или экосистеме. Устройства, осуществляющие обратную связь в живых системах, называются гомеостатическими механизмами. Гомеостаз в применении к организму означает поддержание его внутренней среды и устойчивость его основных физиологических функций. В применении к экосистеме гомеостаз означает сохранение ее постоянного видового состава и числа особей. Гомеостатические механизмы поддерживают стабильность экосистем, предупреждая полное выедание растений травоядными животными или катастрофические колебания численности хищников и их жертв и т.д.
Степень стабильности экосистем весьма различна и зависит как от жесткости окружающей среды, так и от эффективности внутренних управляющих механизмов. При этом выделяют два типа устойчивости:
· резистентная устойчивость – способность оставаться в устойчивом состоянии под нагрузкой. Так, лес из секвойи (высота деревьев выше 100 м, диаметр 6–11 м) устойчив к пожарам, поскольку эти деревья среди сородичей обладают самой толстой корой, содержат десятки тонн воды и т.д. Но если этот лес все-таки сгорит, то восстанавливается очень медленно;
· упругая устойчивость (противоположна резистентной) – способность быстро восстанавливаться. Так, заросли кустарника чапараля легко выгорают, но быстро восстанавливаются.
Помимо систем обратной связи стабильность обеспечивается избыточностью функциональных компонентов. Избыточность хорошо объясняется на примере организма, имеющего парные органы (руки, ноги, глаза, уши, почки, легкие) и многократно дублированные органы иммунитета. Избыточность характерна и для экосистемы. Если в экосистеме имеется несколько видов автотрофных зеленых растений, каждое из которых имеет свой температурный диапазон, то скорость фотосинтеза в экосистеме может оставаться неизменной, несмотря на колебания температуры.
Мозг человека представляет собой устройство с низкими энергетическими характеристиками и с огромными способностями к управлению, поскольку при относительно малой затрате энергии он способен продуцировать разнообразные мощные идеи. Это сделало человека самым могущественным существом на Земле. По крайней мере, это касается его способности изменять функционирование экосистем, в том числе и биосферы.
Основные характеристики экосистемы – ее размер, ее устойчивость, процессы самовосстановления, самоочищения.
Размер экосистемы –
пространство, в котором возможно осуществление процессов саморегуляции и самовосстановления всех составляющих экосистему компонентов и элементов.
Самовосстановление природной экосистемы – самостоятельный возврат природной экосистемы к состоянию динамического равновесия, из которого она была выведена воздействием природных и антропогенных факторов.
Самоочищение –
естественное разрушение загрязнителя в среде в результате процессов, происходящих в экосистеме.
Экосистемы можно классифицировать по разным признакам. Биомная классификация экосистем основана на преобладающем типе растительности в крупных регионах. В водных местообитаниях, где растительность малозаметна, в основе выделения экосистем находятся главные физические черты среды, например «стоячая вода», «текущая вода» и т.д.
Биомная классификация экосистем
Наземные биомы:
Тундра: арктическая и альпийская
Хвойные леса
Листопадный лес умеренной зоны
Степь умеренной зоны
Тропические гарсленд и саванна
Пустыня: травянистая и кустарниковая
Вечнозеленый тропический дождевой лес
Пресноводные экосистемы:
Лентические (стоячие воды): озера, пруды и т.д.
Логические (текучие воды): реки, ручьи и т.д.
Заболоченные угодья: болота и болотистые леса
Морские экосистемы:
Открытый океан (пелагическая)
Воды континентального шельфа (прибрежные воды)
Регионы апвеллинга (плодородные районы с продуктивным рыболовством)
Эстуарии (прибрежные бухты, проливы, устья рек и т.д.)
Использование в экосистемах различных источников энергии – Солнца, химического топлива – позволило выделить четыре фундаментальных вида экосистем по энергетическому
признаку.
· Движимые солнцем несубсидируемые экосистемы - природные системы, полностью зависящие от прямого солнечного излучения. К их числу относятся открытые участки океанов, крупные участки горных лесов и большие глубокие озера. Экосистемы этого типа получают мало энергии и имеют малую продуктивность. Однако они крайне важны, так как занимают огромные площади. Это основной модуль жизнеобеспечения биосферы. Здесь очищаются большие объемы воздуха, возвращается в оборот вода, формируются климатические условия и т. д.
· Экосистемы, движимые Солнцем, но субсидируемые другими естественными источниками. Примерами такой экосистемы являются эстуарии рек, морские проливы и лагуны. Приливы и течения способствуют более быстрому круговороту минеральных элементов питания, поэтому эстуарии более плодородны, чем прилегающие участки океана или суши.
· Экосистемы, движимые Солнцем и субсидируемые человеком. Примером их являются агроэкосистемы (поля, коровники, свинарники, птицефабрики и т.д.).
· Экосистема, движимая топливом – индустриально-городская экосистема, в которой энергия топлива не дополняет, а заменяет солнечную энергию. Потребность в энергии плотно заселенных городов на 2–3 порядка больше того потока энергии, который поддерживает жизнь в естественных экосистемах, движимых Солнцем. Поэтому на небольшой площади города может жить большое количество людей.
Концепция продуктивности. Совокупность организмов в экосистеме в момент наблюдения называют биомассой, скорость продуцирования биомассы – продуктивностью.
Различают первичную продуктивность - скорость, с которой продуценты (зеленые растения) в процессе фотосинтеза связывают энергию и запасают ее в форме органических веществ, и вторичную продуктивность - скорость образования биомассы консументами.
Высокая продуктивность сельского хозяйства в развитых странах поддерживается ценой больших вложений энергии и селекционной работой, направленной на выведение высокоурожайных сортов растений и высокопродуктивных пород животных.
Этот вспомогательный поток энергии называется энергетической субсидией. Если в XIX в. страны мира делились на промышленно развитые и аграрные, то в XX возникла ситуация, при которой чем более развита страна, тем выше продуктивность ее сельского хозяйства. Именно развитые страны могут себе позволить соответствующие энергетические субсидии в сельское хозяйство.
Существует принципиальная разница в поведении энергии и материи. Материя циркулирует в системе; элементы и вещества, входящие в состав живого, имеют свои циклы, свои круговороты. Энергия, однажды использованная экосистемой, превращается в тепло и утрачивается для системы.
Пищевые цепи, пищевые сети. Перенос веществ и энергии пищи от ее источника – зеленых растений – через ряд организмов, от одного звена потребителей к другому называется пищевой или трофической цепью.
Рациональное поведение звеньев трофической цепи определяется не эффективностью добывания пищи, а умеренностью. Поэтому в экосистемах остаются лишь виды, хорошо выполняющие свои биологические функции – живущие и дающие жить другим. Особенности человека как биологического вида в трофических цепях состоят в следующем:
· человек всеяден и может жить то за счет одних, то за счет других звеньев трофической цепи; это снимает с него узду умеренности;
· он может приближать к себе ресурсы с помощью одомашнивания растений и животных или привозить их, выходя из-под контроля среды в месте проживания;
· он может уходить из нарушенной им цепи в другую. Это дает человеку чувство свободы, однако это свобода от немедленного ответного воздействия и от ответственности перед потомками.
Трофическая структура экосистемы состоит из ряда параллельных и переплетающихся пищевых цепей и называется пищевой или трофической сетью.
Метаболизм и размеры особей. При неизменном энергетическом потоке в пищевой цепи более мелкие организмы имеют более высокую интенсивность обмена, более высокий удельный метаболизм (метаболизм в пересчете на 1 кг массы), чем крупные организмы.
При этом мелкие организмы создают относительно меньшую биомассу, чем крупные. Так, биомасса бактерий, имеющихся в данный момент в экосистеме, гораздо ниже биомассы млекопитающих. Эта закономерность получила название правила Одума. Это правило заслуживает особого внимания, поскольку из-за антропогенного нарушения природы происходит измельчание организмов, которое неминуемо должно привести к общему снижению продуктивности и к разладу в экосистемах.
При измельчании особей выход биомассы с единицы площади в силу более плотного заселения пространства увеличивается. Слоны не дадут такой биомассы и продукции с единицы площади, которую способна дать саранча. Это – закон удельной продуктивности. Так, мелкие предприятия и фермы в сумме производят больший объем хозяйственной продукции, чем крупные, тем более крупнейшие.
Исчезновение видов, представленных крупными особями, меняет структуру экосистем. При этом организмы одной трофической группы замещают друг друга. Так, копытных в степи и саванне сменяют грызуны, а в ряде случаев – растительноядные насекомые. Это – принцип экологического дублирования.
В результате потери энергии при переносе ее по трофической цепи и таких факторов, как зависимость метаболизма от размеров особи, каждая экосистема приобретает определенную трофическую структуру. Ее можно представить в виде экологических пирамид. Если принять, что в вещество тела животного переходит в среднем 10% энергии съеденной пищи, то за счет 1 т растительной массы может образоваться 100 кг массы тела травоядного животного, а за счет последнего – 10 кг массы тела хищников.
Экологические факторы. На состояние окружающей среды и на живые организмы оказывают сильное влияние различные экологические факторы [27]. Экологический фактор – любое условие среды, способное оказывать прямое или косвенное воздействие на живые организмы. Экологические факторы делятся на три категории: 1) абиотические – факторы неживой природы; 2) биотические – факторы живой природы; 3) антропогенные – факторы человеческой деятельности.
Приспособительные реакции организмов к тем или иным факторам среды определяются периодичностью их воздействия. К первичным периодическим факторам относятся явления, связанные с вращением Земли, – смена времен года, суточная смена освещенности и т.д. Эти факторы действовали еще до появления жизни на Земле, и возникающие живые организмы должны были сразу адаптироваться к ним. Вторичные периодические факторы – следствия первичных, это влажность, температура, осадки и т.д. К непериодическим факторам относятся стихийные явления, а также факторы, имеющие техногенную природу.
Абиотические факторы наземной среды:
1. Свет.
Поступающая от Солнца лучистая энергия распределяется по спектрам следующим образом. На видимую часть спектра с длиной волны 400-750 нм приходится 48% солнечной радиации. Наиболее важную роль для фотосинтеза играют оранжево-красные лучи, на которые приходится 45% солнечной радиации. Инфракрасные лучи с длиной волны более 750 нм не воспринимаются многими животными и растениями, но являются необходимыми источниками тепловой энергии. На ультрафиолетовую часть спектра – менее 400 нм – приходится 7% солнечной энергии.
2. Ионизирующее излучение –
это излучение с очень высокой энергией, способное выбивать электроны из атомов и присоединять их к другим атомам с образованием пар положительных и отрицательных ионов. Источник ионизирующего излучения - радиоактивные вещества и космические лучи. Доза излучения (1 рад) – это такая доза излучения, при которой на 1 г ткани поглощается 100 эрг энергии. Единица дозы излучения, которую получает человек, называется бэр (биологический эквивалент рентгена); 1 бэр равен 0,01 Дж/кг.
В течение года человек в среднем получает дозу 0,1 бэр и, следовательно, за всю жизнь (в среднем 70 лет) 7 бэр.
3. Влажность атмосферного воздуха –
параметр, характеризующий процесс насыщения его водяными парами. Разность между максимальным (предельным) насыщением и данным насыщением называется дефицитом влажности. Чем выше дефицит, тем суше и теплее, и наоборот.
Растения пустынь приспосабливаются к экономному расходованию влаги. Они имеют длинные корни и уменьшенную поверхность листьев. Пустынные животные способны к быстрому и продолжительному бегу для длинных маршрутов на водопой. Внутренним источником воды у них служит жир, при окислении 100 г которого образуется 100 г воды.
4. Осадки являются результатом конденсации водяных паров. Они играют важную роль в круговороте воды на Земле. В зависимости от характера их выпадения выделяют гумидные (влажные) и аридные (засушливые) зоны.
5. Газовый состав атмосферы.
Важнейшим биогенным элементом атмосферы, который участвует в образовании белков в организме, является азот. Кислород, поступающий в атмосферу в основном от зеленых растений, обеспечивает дыхание. Углекислый газ является естественным демпфером солнечного и ответного земного излучений. Озон выполняет экранирующую роль по отношению к ультрафиолетовой части солнечного спектра.
6. Температура на поверхности Земли определяется температурным режимом атмосферы и тесно связана с солнечным излучением. Для большинства наземных животных и растений температурный оптимум колеблется от 15 до 30°С. Некоторые моллюски живут в горячих источниках при температуре до 53°С, а некоторые сине-зеленые водоросли и бактерии – до 70–90°С. Глубокое охлаждение вызывает у насекомых, некоторых рыб и пресмыкающихся полную остановку жизни – анабиоз. Так, зимой карась вмерзает в ил, а весной оттаивает и продолжает обычную жизнедеятельность. У животных с постоянной температурой тела, у птиц и млекопитающих состояние анабиоза не наступает. У птиц в холодные времена отрастает пух, у млекопитающих – густой подшерсток. Животные, у которых зимой корма недостаточно, впадают в спячку (летучие мыши, суслики, барсуки, медведи).
Абиотические факторы водной среды:
На долю Мирового океана приходится 71% земной поверхности. Водная среда отличается от наземной плотностью и вязкостью. Плотность воды в 800 раз, а вязкость в 55 раз больше плотности воздуха. Наряду с этим важнейшими особенностями водной среды являются: подвижность, температурная стратификация, прозрачность и соленость, от которых зависит фотосинтез бактерий и фитопланктона и своеобразие среды обитания гидробионтов.
Биотические факторы окружающей среды:
Под биотическими факторами понимают совокупность влияний жизнедеятельности одних организмов на другие.
Антропогенные факторы окружающей среды.
Антропогенные факторы окружающей среды обязаны своим происхождением комплексной техногенной деятельности человека на Земле, включающей его бытовую сферу (сжигание мусора и отходов, строительство и т.д.) и производственную деятельность (все отрасли промышленной индустрии, сельское хозяйство, нефте-, газо- и горнодобывающие отрасли и т.д.).
Лимитирующие факторы: законы минимума и толерантности:
В 1840 г. Ю. Либихом был сформулирован закон минимума, согласно которому развитие растений лимитируется не теми элементами питания, которые присутствуют в почве в изобилии, а теми, которых очень мало (например, цинк или бор). Закон минимума справедлив и для животных, и для человека. Здоровье человека определяется в том числе и специфическими веществами, которые присутствуют в организме в ничтожных количествах (витамины, микроэлементы).
Любому живому организму или сообществу организмов необходимы не вообще температура, влажность, пища и т.д., а их определенный режим, т. е. границы допустимых колебаний этих факторов. Диапазон между экологическим минимумом и экологическим максимумом составляет пределы устойчивости, т. е. толерантности данного организма – этот закон толерантности
был сформулирован в 1910 г. В. Шелфордом.
Ценность концепции лимитирующих факторов в том, что она дает возможность исследования самых сложных экологических ситуаций. Если для организма характерен широкий диапазон толерантности к фактору, который присутствует в среде в умеренных количествах, то такой фактор не может быть лимитирующим. Напротив, если организм обладает узким диапазоном толерантности к какому-нибудь изменчивому фактору, то этот фактор заслуживает изучения, так как может быть лимитирующим.
Биогеохимические циклы. В экосистемах очень важна роль биогеохимических циклов [27]. Биогенные элементы - С, О2, N2, Р, S, СО2, Н2О и другие – в отличие от энергии удерживаются в экосистемах и совершают непрерывный круговорот из внешней среды в организмы и обратно во внешнюю среду.
Эти замкнутые пути называют биогеохимическими циклами. В каждом круговороте различают два фонда: резервный, включающий большую массу движущихся веществ, в основном небиологических компонентов, и подвижный, или обменный, фонд – по характеру более активный, но менее продолжительный, отличительной особенностью которого является быстрый обмен между организмами и их непосредственным окружением.
Биогеохимические циклы можно подразделять на два типа: 1) круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере (океан), 2) осадочный цикл с резервным фондом в земной коре.
Из 90 с лишним элементов, встречающихся в природе, 30– 40 необходимы для живых организмов. Человек уникален не только тем, что его организм нуждается в 40 элементах, но и тем, что в своей деятельности использует почти все другие имеющиеся в природе элементы.
Круговорот азота. Азот составляет около 80% атмосферного воздуха и является крупнейшим резервуаром и предохранительным клапаном атмосферы. Однако большинство организмов не могут усваивать азот из воздуха. Между тем азот участвует в построении всех белков и нуклеиновых кислот. Усваивать азот из воздуха способны только некоторые организмы – бактерии, которые существуют в симбиозе с бобовыми растениями (горох, фасоль, соя). Они поселяются на корнях бобовых растений, образуя клубеньки, в которых и происходит химическая фиксация азота. Азот могут усваивать также сине-зеленые водоросли, называемые цианобактериями. Они образуют симбиоз с плавающим папоротником, который растет на заливаемых водой рисовых полях и до высадки рассады риса удобряет эти поля азотом. Первый этап фиксации атмосферного азота приводит к образованию аммиака и называется аммонификацией (рис. 1.1). Аммиак используется растениями для синтеза аминокислот, из которых состоят белки. Второй этап фиксации азота микроорганизмами – нитрификация, при этом образовавшийся аммиак преобразуется в соли азотной кислоты - нитраты. Нитраты усваиваются корнями растений и транспортируются в листья, где происходит синтез белков.
Процесс разложения белков, осуществляемый особой группой бактерий, называется денитрификацией. Распад идет сначала с образованием нитратов, потом аммиака и, наконец, молекулярного азота. Содержание азота в живых тканях составляет около 3% его содержания в обменных фондах экосистем. Общее время круговорота азота – примерно 100 лет.
Круговорот углерода. Круговороты углекислоты и воды в глобальном масштабе – самые важные для человечества биогеохимические круговороты.
В круговороте СО2 атмосферный фонд невелик по сравнению с запасами углерода в океанах, ископаемом топливе и других резервуарах земной коры. До наступления индустриальной эры потоки углерода между атмосферой, материками и океанами были сбалансированы. Но в XX в. содержание СО2
постоянно растет в результате новых техногенных поступлений (сжигание горючих ископаемых, деградация почвенного слоя, сведение лесов и т.д.). В 1800 г. в атмосфере Земли содержалось 0,29% СОз; в 1958 - 0,315%, а к 1980 г. его содержание выросло до 0,335%. Если концентрация СО2 вдвое превысит доиндустриальный уровень, что может случиться в середине XXI в., то температура поверхности Земли и нижних слоев атмосферы в среднем повысится на 3°. В результате подъем уровня моря и перераспределение осадков могут погубить сельское хозяйство.
Биологический круговорот углерода достаточно прост; в нем участвуют только органические соединения и СО2 (рис. 1.2). Весь потребленный в процессе фотосинтеза углерод включается в углеводы, а в процессе дыхания весь углерод, содержащийся в органических соединениях, превращается в СО2. Растения потребляют ежегодно около 100 млрд. т. углерода, 30 млрд. т. возвращаются в атмосферу в результате дыхания растений. Остальные 70 млрд. т. обеспечивают дыхание и продукцию животных, бактерий и грибов в различных трофических цепях. Растения и животные ежегодно пропускают через себя 0,25–0,30% углерода, содержащегося в атмосфере и океанах. Весь обменный фонд углерода совершает круговорот каждые 300–400 лет.
Кроме СО2 в атмосфере присутствует в небольших количествах окись углерода – СО (примерно 0,1 части на миллион). Однако в городах с сильным автомобильным движением содержание СО может достигать 100 частей на миллион, что представляет уже угрозу для здоровья человека. Для сравнения можно привести другой пример: курильщик, потребляющий в день пачку сигарет, получает до 400 частей на миллион, что часто является причиной анемии и других сердечно-сосудистых заболеваний.
Другое соединение углерода в атмосфере – метан (СН4). Его содержание составляет 1,6 частей на миллион. Считается, что метан поддерживает стабильность озонового слоя в атмосфере.
Круговорот воды. Вода составляет значительную часть живых существ: в теле человека – по весу 60%, а в растительном организме достигает 95%. На круговорот воды на поверхности Земли затрачивается около трети всей поступающей на Землю солнечной энергии. Испарение с водных пространств создает атмосферную влагу. Влага конденсируется в форме облаков, охлаждение облаков вызывает осадки в виде дождя и снега; осадки поглощаются почвой или стекают в моря и океаны.
Для человечества важны фазы круговорота в пределах экосистем. Здесь происходят четыре процесса (рис. 1.3):
· перехват. Растительность перехватывает часть выпадающей в осадках воды до того, как она достигает почвы. Перехваченная вода испаряется в атмосферу. Величина перехвата в умеренных широтах может достигать 25% общей суммы осадков, это – физическое испарение;
· транспирация – биологическое испарение воды растениями, но не дождевая вода, а вода, заключенная в растении, т. е. экосистемная. Растения, потребляя около 40% общего количества осадков, играют главную роль в круговороте воды;
· инфильтрация – просачивание воды в почве. При этом часть инфильтрованной воды задерживается в почве тем сильнее, чем значительнее в ней коллодоидальный комплекс, соответствующий накоплению в почве перегноя;
· сток. В этой фазе круговорота избыток выпавшей с осадками воды стекает в моря и океаны.
Отличие циклов углерода и азота от круговорота воды состоит в том, что в экосистемах два названных элемента накапливаются и связываются, а вода проходит через экосистемы почти без потерь. Биосфера ежегодно использует на формирование биомассы 1% воды, выпавшей в виде осадков.
Круговорот фосфора. Фосфор – один из наиболее важных биогенных компонентов. Он входит в состав нуклеиновых кислот, клеточных мембран, систем аккумуляции и переноса энергии, костной ткани и дентина. Круговорот фосфора всецело связан с деятельностью организмов.
В отличие от азота и углерода резервуаром фосфора служат не атмосфера, а горные породы и отложения, образовавшиеся в прошлые геологические эпохи. Круговорот фосфора – типичный пример осадочного цикла.
Круговорот второстепенных элементов. Второстепенные элементы подобно жизненно важным мигрируют между организмами и средой, хотя и не представляют ценности для организмов. Но в окружающую среду часто попадают побочные продукты промышленности, содержащие высокие концентрации тяжелых металлов, радиоактивные элементы и ядовитые органические соединения.
Радиоактивный Sr-90 крайне опасен для человека и животных. По химическим свойствам он похож на кальций и поэтому, попав в организм, накапливается в костях и оказывается в опасном контакте с костным мозгом – кровеносной тканью.
Радиоактивный Cs-137 – по свойствам схож с калием и поэтому быстро циркулирует по пищевым цепям.
Sr-90 и Cs-137 - новые вещества, которые не существовали в природе до того, как человек расщепил атом. Они характеризуются длительными периодами полураспада. Аккумуляция этих радиоактивных изотопов в организме человека создает постоянный источник облучения, приводящего к канцерогенезу.
Для того чтобы количественно определить повторно используемую часть вещества в обороте, предложен коэффициент рециркуляции – отношение суммарных количеств вещества, циркулирующих между разными отделами системы, к общему потоку вещества через всю систему: CI = TSTc/TST, где СI
– коэффициент рециркуляции, TSTc
- рециркулируемая доля потока через систему и TST – общий поток вещества через систему.
Элементы, которые человек считает ценными (платина, золото), повторно используются на 90% и более. Однако коэффициент рециркуляции энергии равен нулю.
Критерии оценки качества окружающей среды
Государственная экологическая экспертиза представляет собой систему государственных природоохранных мероприятий, направленных на проверку соответствия проектов, планов и мероприятий в области народного хозяйства и природных ресурсов требованиям защиты окружающей среды от вредных воздействий.
Токсикологическая характеристика технологических процессов требует обоснования рекомендаций по такому изменению производства, чтобы уменьшить количество вредных полупродуктов или побочных соединений или исключить их, и медико-технических требований к планированию производственных помещений, аппаратуре, санитарно-техническому оборудованию, в том числе очистному или рассеивающему, и – в случае необходимости – к индивидуальным средствам защиты. В основе этого лежит установление предельно допустимых концентраций (ПДК) вредных веществ в различных средах.
В воздушной среде:
· ПДКр.з
– предельно допустимая концентрация вещества в воздухе рабочей зоны, мг/м3. Эта концентрация при ежедневной (кроме выходных дней) работе в пределах 8 ч или другой продолжительности, но не более 41 ч в неделю, в течение всего рабочего стажа не должна вызывать в состоянии здоровья настоящего и последующего поколений заболеваний или отклонений, обнаруживаемых современными методами исследования в процессе работы. Рабочей зоной считается пространство высотой до 2 м над уровнем пола или площадки, на которой находятся места постоянного или временного пребывания работающих;
· ПДКМ.Р
– предельно допустимая максимальная разовая концентрация вещества в воздухе населенных мест, мг/м3. Эта концентрация при вдыхании в течение 20 мин не должна вызывать рефлекторных (в том числе субсенсорных) реакций в организме человека;
· ПДКС.С
– предельно допустимая среднесуточная концентрация токсичного вещества в воздухе населенных мест, мг/м3. Эта концентрация не должна оказывать на человека прямого или косвенного вредного воздействия при неограниченно продолжительном вдыхании.
В водной среде:
· ПДКВ
– предельно допустимая концентрация вещества в воде водоема хозяйственно-питьевого и культурно-бытового водопользования, мг/л. Эта концентрация не должна оказывать прямого или косвенного влияния на органы человека в течение всей его жизни, а также на здоровье последующих поколений и не должна ухудшать гигиенические условия водопользования;
· ПДКВ.Р
– предельно допустимая концентрация вещества в воде водоема, используемого для рыбохозяйственных целей, мг/л;
· Интегральные показатели для воды:
БПК – биологическая потребность в кислороде – количество кислорода, использованного при биохимических процессах окисления органических веществ (исключая процессы нитрификации) за определенное время инкубации пробы (2, 5, 20, 120 суток), мг О2/л воды (БПКП
– за 20 суток, БПК5 – за 5 суток);
ХПК – химическая потребность в кислороде,
определенная бихроматным методом, т. е. количество кислорода, эквивалентное количеству расходуемого окислителя, необходимого для окисления всех восстановителей, содержащихся в воде, мг О2/л воды.
По отношению БПКП /ХПК судят об эффективности биохимического окисления веществ.
В почве:
· ПДКП
– предельно допустимая концентрация вещества в пахотном слое почвы, мг/кг. Эта концентрация не должна вызывать прямого и косвенного отрицательного влияния на здоровье человека, а также на самоочищающую способность почвы;
· ПДКПР
(ДОК) – предельно допустимая концентрация (допустимое остаточное количество) вещества в продуктах питания, мг/кг.
Если величина ПДК в различных средах не установлена, действует временный гигиенический норматив ВДК (ОБУВ) – временно допустимая концентрация (ориентировочно безопасный уровень воздействия) вещества. Временный норматив устанавливается на определенный срок (2–3 года).
Различные вещества могут оказывать сходное неблагоприятное воздействие на организм.
Например, существует эффект суммации для диоксида азота и формальдегида, фенола и ацетона, этанола и целой группы органических веществ. Для токсичных веществ безопасная концентрация определяется соотношением С/ПДК < 1, где С – фактическая концентрация вещества в среде.
Допустим, что в воздухе концентрация фенола С ф = 0,345 мг/л, ацетона С ац = 0,009мг/л, а ПДК ф
= 0,35мг/л, ПДК ац = 0,01 мг/л. Таким образом, для каждого из веществ указанное соотношение меньше 1:
С1/ПДК1 < 1; С2/ПДК2 < 1.
Но поскольку эти вещества обладают эффектом суммации, то общее загрязнение фенолом и ацетоном превысит предельно допустимое, так как
Таким образом, сумма отношений концентраций к ПДК веществ, обладающих эффектом суммации, не должна превышать единицы.
Для более полной оценки качества среды сравнительно недавно стали использовать другой критерий – ПДЭН – предельно допустимую экологическую нагрузку, для воды – это ПДС – предельно допустимый сброс, г/с; для воздуха – ПДВ – предельно допустимый выброс, г/с. Эти величины характеризуют нагрузку, оказываемую предприятием на окружающую среду в единицу времени, и должны обязательно входить в экологический паспорт (или другой подобный документ) предприятия.
Недостатком изложенной выше схемы критериев оценки качества среды является разрозненность природоохранных функций различных министерств и ведомств, а также часто очень различающиеся значения ПДК в разных странах.
Контрольные вопросы
1. Какие основные задачи решают системы мониторинга окружающей среды?
2. Что означает термин «мониторинг»? Приведите формулировку определения мониторинга, данную программой ЮНЕП в 1974 г.
3. Какие типы классификации экологического мониторинга вы знаете?
4. Какие два основных критерия оценки качества окружающей среды вы знаете? В чем их различие?
5. Какие основные виды ПДК (предельно допустимой концентрации) для воздушной среды вы знаете? Укажите единицы измерения.
6. Приведите два различных вида ПДК для водной среды.В чем их различие? Каковы единицы измерения?
7. Какие существуют интегральные показатели качества воды? Каковы их единицы измерения?
8. Что такое эффект суммации? Приведите примеры.
9. Что означают аббревиатуры ВДК, ОБУВ, ПДЭН? В каких случаях эти показатели применяются для оценки качества среды? Каковы их единицы измерения?
Ликвидация последствий чрезвычайных ситуаций
Ликвидация последствий чрезвычайных ситуаций должна выполняться в максимально короткие сроки. В этой деятельности различают три основных этапа.
На первом этапе реализуются мероприятия по экстренной защите населения.
Через систему оповещения население информируют о возникновении чрезвычайных ситуаций и о необходимости использования средств индивидуальной защиты. Проводятся эвакуация людей из опасных зон и оказание им первой медицинской помощи. Принимаются неотложные меры для локализации аварий, а в случае необходимости вводится в действие комплекс противопожарных мероприятий. Возможны также временная остановка технологических процессов на предприятиях или их изменение.
На этом этапе проводится подготовка к выполнению спасательных и других неотложных работ. Для этого заблаговременно создаются специально обученные спасательные формирования. На промышленных объектах спасательные подразделения формируются из числа работников этого объекта (подразделения гражданской обороны объекта).
Для получения сведений о сложившейся в результате чрезвычайной ситуации обстановке проводят разведку очага поражения – территории, на которой возникли негативные последствия в результате действия опасных и вредных факторов, вызванных чрезвычайной ситуацией. Форма очага поражения зависит от вида чрезвычайной ситуации: при взрывах и землетрясениях – форма круглая, при ураганах, затоплениях и смерчах – имеет вид полосы, при пожарах и оползнях образуется очаг поражения неправильной формы и т.д. Различают простые и сложные (комбинированные) очаги поражения. Простые очаги поражения возникают под действием одного опасного или вредного фактора чрезвычайной ситуации, а комбинированные – от воздействия нескольких факторов.
На втором этапе проводятся спасательные и другие неотложные работы, а также продолжается выполнение задач по защите населения и уменьшению последствий чрезвычайных ситуаций, начатых на первом этапе. Продолжаются локализация и тушение пожаров, а также спасение людей из горящих зданий и сооружений.
Если в результате чрезвычайной ситуации разрушены или завалены защитные укрытия и убежища, в которых находились люди, проводится их розыск и извлечение из завалов. Пострадавших и получивших ранения доставляют в медицинские учреждения. Продолжается также эвакуация населения из опасных зон.
В случае необходимости (выброса в окружающую среду радиоактивных или токсичных химических веществ, а также бактериологических агентов) проводят специальную обработку, которая представляет собой комплекс мероприятий, проводимых с целью восстановления готовности людей, входящих в состав специальных формирований, и используемой техники к продолжению аварийно-восстановительных работ в очагах поражения, а также подготовки объектов к возобновлению производственной деятельности.
Специальная обработка состоит из обеззараживания и санитарной обработки. Обеззараживание включает в себя следующие операции: дезактивацию, дегазацию, дезинфекцию и дератизацию. Дезактивация – это удаление радиоактивных веществ с поверхностей различных предметов, а также очистка от них воды. Различают механический и физико-химический (химический) способы удаления радиоактивных веществ (радиоактивной пыли) с очищаемых поверхностей. Механическое удаление радиоактивной пыли сводится к смыванию ее водой под давлением с поверхности загрязненных предметов. При использовании химического способа радиоактивную пыль связывают специальными растворами, препятствуя тем самым ее распространению в окружающей среде. Для этого используют поверхностно-активные (порошок Ф-2, препарат ОП-7 и ОП-10) и комплексообразующие вещества, кислоты и щелочи (фосфаты натрия, трилон Б, щавелевую и лимонную кислоты, соли этих кислот).
Если загрязненная территория имеет твердое покрытие, то ее дезактивируют механическим способом. Территории без твердого покрытия обрабатывают пленкообразующими и закрепляющими растворами (латекс, спиртосульфатная барда, нефтяные шламы и др.) или просто водой, после чего связанную таким образом радиоактивную пыль удаляют с поверхности зараженной территории, срезая бульдозерами или грейдерами загрязненный слой грунта толщиной 5–10 см.
Этот грунт помещают в металлические контейнеры и захоранивают на специальных полигонах. Обработанную территорию засыпают слоем незагрязненного грунта толщиной 9–10 см. Дезактивацию поверхностей зданий проводят путем связывания радиоактивной пыли пленкообразующими составами с последующим ее удалением мощными пылесосами. Возможна также обработка поверхностей малоэтажных зданий и растительности водой или дезактивирующими растворами с привлечением специальной техники (пожарных машин, мотопомп).
Существуют различные методы дезактивации воды: фильтрование, отстаивание, перегонка, очистка с использованием ионообменных смол. Зараженные открытые водоемы дезактивируют, обрабатывая абсорбирующими и комплексообразующими глинами. Очистку рек, ручьев и иных стоков проводят, пропуская воду через плотины фильтрующего типа. В качестве фильтрующего элемента в них используют адсорбирующий наполнитель. Дезактивацию колодцев проводят многократным откачиванием из них воды и удалением зараженного грунта со дна. Для дезактивации упакованных продуктов питания заменяют загрязненную тару. Если продукты не были упакованы, то с их поверхности снимают зараженный слой.
Следующая операция обезвреживания – дегазация.
Ее используют для разложения отравляющих и сильнодействующих ядовитых веществ до нетоксичных продуктов. В качестве дегазирующих веществ используются также химические соединения, которые вступают в реакцию с отравляющими и сильнодействующими ядовитыми веществами.
Для удаления отравляющих и сильнодействующих химических веществ с зараженных поверхностей используют моющие растворы, приготовленные на основе порошка СФ-24 или бытовых синтетических моющих веществ. Эти растворы, не обезвреживают отравляющие вещества, а лишь позволяют быстро смыть их с зараженной поверхности.
Дегазацию проводят с применением воды, моющих растворов, растворов дегазирующих и органических веществ, используя моечные машины. Если имеет место комбинированное загрязнение радиоактивными и отравляющими веществами, то сначала проводят дегазацию, а уж затем дезактивацию.
Для уничтожения возбудителей инфекционных заболеваний человека и животных в окружающей среде проводят дезинфекцию.
Ее осуществляют физическими, химическими и механическими методами.
Физические методы применяют в основном при кишечных инфекциях. К ним относятся: кипячение белья, посуды, предметов ухода за больными, сжигание ненужных и непригодных для дальнейшего использования вещей. Химический метод дезактивации заключается в уничтожении болезнетворных микробов и разрушении токсинов дезинфицирующими веществами, в качестве которых используются этанол, пропанол, фенол (карболовая кислота) и его производные (например, трихлорофенол), а также ряд других веществ. Зараженную бактериологическими агентами территорию обрабатывают (поливают) дезинфицирующими веществами. Этот способ дезактивации является основным. Механический метод дезинфекции заключается в удалении зараженного слоя грунта или устройстве настилов.
С целью предотвращения распространения инфекционных заболеваний используют методы дератизации,
заключающиеся в уничтожении переносчиков этих заболеваний (мышей, крыс, других грызунов). Как и дезинфекция, дератизация может осуществляться химическим, механическим и биологическим методами. Например, крыс уничтожают, используя в качестве ядохимиката карбонат бария.
Как уже сказано выше, специальная обработка включает в себя и санитарную обработку, под которой понимают комплекс мероприятий по ликвидации заражения личного состава спасательных формирований и населения радиоактивными и отравляющими веществами, а также бактериологическими средствами. При санитарной обработке обеззараживают как поверхность тела человека, так и наружные слизистые оболочки. Обрабатывают также одежду, обувь и индивидуальные средства защиты.
Различают полную и частичную санитарную обработку. Первой из них подвергается личный состав спасательных формирований, а также эвакуированное население после выхода из загрязненных зон. При полной санитарной обработке обеспечивается полное обеззараживание от радиоактивных, отравляющих и бактериальных средств.
Она проводится на пунктах специальной обработки людей. Одежда и другие предметы и вещи обеззараживают камерным или газовым методом, а также замачиванием в растворах дезинфектов и последующей стиркой, кипячением и др.
Частичная санитарная обработка осуществляется непосредственно в очаге поражения для исключения вторичного инфицирования людей. При этом проводят механическую очистку и обработку открытых участков кожи, поверхностей одежды, обуви и индивидуальных средств защиты.
На заключительном (третьем) этапе начинаются работы по восстановлению функционирования объектов народного хозяйства, которые выполняются строительными, монтажными и другими специальными организациями. Кроме этого, осуществляется ремонт жилья или возведение временных жилых построек. Восстанавливаются также энерго- и водоснабжение, объекты коммунального обслуживания и линии связи. После окончания этих и ряда других работ производится возвращение (реэвакуация) населения к месту постоянного жительства.
Контрольные вопросы
1. Дайте определение понятия «чрезвычайная ситуация» (ЧС).
2. Какова взаимосвязь понятий «опасность», «риск» и «чрезвычайная ситуация»?
3. Каковы критерии ЧС?
4. Как классифицируются ЧС?
5. Каков ущерб от ЧС?
6. Назовите стадии ЧС.
7. Какова продолжительность развития ЧС?
8. Каковы масштабы ЧС?
9. Что такое «экологические катастрофы»'?
10. Перечислите причины и стадии техногенных катастроф.
11. Каковы медицинские последствия аварии на Чернобыльской АЭС?
12. Как обеспечивается устойчивость работы объектов народного хозяйства в чрезвычайных ситуациях?
13. Что надо сделать для повышения устойчивости функционирования наиболее важных видов технических систем и объектов народного хозяйства в чрезвычайных ситуациях?
14. Перечислите основные этапы ликвидации последствий чрезвычайных ситуаций.
15. Поясните понятия «дезактивация», «дегазация», «дезинфекция», «дератизация».
16. Как осуществляют санитарную обработку населения?
Маркетинговый механизм управления охраной окружающей среды
Аспекты экологически ориентированного маркетинга в мировом сообществе связаны с быстрым развитием технологий и процессов, снижающих воздействие на окружающую среду, а также с ускоренным формированием рынка экологических услуг, который, естественно, требует соответствующего развития маркетинговых средств управления. К основным маркетинговым направлениям
в этой области следует отнести:
· формирование финансовых структур поддержки экологических действий;
· экологическую оценку (аудит) уровня воздействия на окружающую среду;
· экологическое страхование действий компаний;
· изменение форм отчетности деятельности производителей;
· новые формы рекламы;
· формирование новых принципов торговли (например, продажа экологически чистых продуктов).
Маркетинговый механизм управления охраной окружающей среды основан на типологии рыночных методов. В настоящее время известны следующие основные группы методов управления:
· административное регулирование – введение соответствующих нормативных стандартов и ограничений, которые должны соблюдать фирмы-производители, а также осуществление прямого контроля и лицензирования процессов природопользования;
· экономические стимулы, направленные на то, чтобы заинтересовать фирму-производителя в рациональном природопользовании;
· система платежей за загрязнение и экологических налогов;
· распределение прав на загрязнение и компенсационные платежи.
Данные методы необходимо использовать на различных стадиях маркетингового процесса, воздействующего на окружающую среду. Это воздействие зависит от состава первичных ресурсов, специфики производственного процесса и применяемых природоохранных технологий, формирующих выбросы в окружающую среду.
Особая роль здесь отводится платежам и налогам за загрязнение. Они представляют собой косвенные рычаги воздействия и выражаются в установлении платы за выбросы или сбросы, за использование первичных ресурсов, конечную продукцию или технологию. Плата должна соответствовать социально-экономическому ущербу от загрязнения или определяться по какому-либо другому показателю (например, экономической оценке ассимиляционного потенциала природной среды). Налоги на загрязнение и платежи предоставляют максимальную свободу загрязнителю в выборе стратегии сочетания степени очистки и платы за остаточный выброс. Если природоохранные издержки низки, то фирма значительно сократит выбросы, вместо того чтобы платить налог. Предполагается, что она может сократить их до оптимального уровня, когда прирастающие затраты на добавочную очистку становятся равными ставке платежа.
Пользователь какого-либо ресурса платит за него так же, как за приобретаемое сырье, электроэнергию и т.д.
Платежи пользователей
на покрытие административных расходов могут включать плату за получение разрешения или лицензии, а также другие номинальные платежи, соответствующие величине выбросов и покрывающие издержки на раздачу разрешений и лицензий. Эти платежи в целом меньше платежей за загрязнение и имеют ограниченное воздействие на уровень выбросов фирмы. Скорее всего, их надо рассматривать как лицензионный сбор, который сопровождается выдачей лицензии.
Субсидии
представляют собой специальные выплаты фирмам-загрязнителям за сокращение выбросов. Среди субсидий наиболее часто встречаются инвестиционные налоговые кредиты, займы с уменьшенной ставкой процента, гарантии займов, обеспечение ускоренной амортизации природоохранного оборудования, средства на регулирование цен первичных ресурсов и конечной продукции.
Если считать, что права собственности на окружающую среду принадлежат всему обществу в целом, то фирмы-загрязнители должны нести обязательную ответственность за причиненный ущерб. Если налог на загрязнение или плата за выбросы отражают предельный ущерб, определенный до акта выброса, то в системе обязательной ответственности за ущерб плата рассчитывается по факту выброса (после него) конкретно для каждого случая.
Иначе говоря, нанесшая ущерб фирма обязана либо каким-то образом его компенсировать, либо провести очистку нарушенного природного объекта, либо выплатить компенсации пострадавшим, либо сделать еще что-то. С этой целью оформляются специальные документы, закрепляющие обязательства на осуществление природоохранной деятельности под соответствующий залог.
Данный подход особенно эффективен, если число загрязнителей и их жертв ограничено, а размер загрязнения и его состав легко отследить. Необходимо различать аварийные выбросы и восстановление экосистемы после осуществления определенной деятельности (рекультивация земель).
В первом случае фирма может лишь прогнозировать будущий ущерб и принимать все меры, чтобы его не допустить. Но если такой ущерб будет нанесен, виновник полностью компенсирует его. В качестве гарантий здесь могут выступать активы фирмы, в том числе страховой полис и т.п.
Во втором случае примерные масштабы будущего ущерба известны, если речь идет, например, о добыче полезных ископаемых. В качестве гарантий здесь выступает денежный депозит, вносимый фирмой. Если она сама проведет рекультивацию земель, то получит свой депозит обратно, если нет, то суммы депозита должно хватить, чтобы рекультивацию провел кто-нибудь другой. Свою ответственность по компенсации ущерба загрязнитель может переложить на посредника, внося плату за загрязнение по ставкам, соответствующим экономической оценке ассимиляционного потенциала. Он, как сказано выше, оплачивает в том числе и ущерб, т.е. должен рассчитаться с жертвой загрязнения.
Система целевого резервирования средств на утилизацию отходов (залогов) используется для создания стимула у потребителей на осуществление дополнительных издержек. В момент покупки товара, предопределяющей предстоящее загрязнение, осуществляется вклад, который возвращается с процентами после утилизации отходов (например, покупка батареек, напитков в жестяных банках и т.п.). Известны случаи применения данной системы для стимулирования восстановления и утилизации отработанных масел, рециклирования озоноразрушающих веществ.
Информационные системы,
служащие для обеспечения полноты информации и свободы ознакомления с ней, играют роль, подобную экономическим стимулам. Если фирмы предоставляют всю информацию, то потребители или жители близлежащих территорий оповещаются о размерах загрязнения или вредных веществах в продукции. Информированность (антиреклама) ведет к изменению спроса на продукцию, обеспечивая сокращение загрязнения, использование соответствующих первичных ресурсов или типов технологии.
Матричные модели
Матричную модель можно рассматривать как конечно-разностный аналог динамической модели. Один из ранних вариантов матричной модели был разработан Льюисом и Лесли [30] как детерминистская модель, предсказывающая будущую возрастную структуру популяции самок по известной структуре в настоящий момент времени и гипотетическим коэффициентам выживания и плодовитости. Популяцию разбивают на n+1 возрастную группу (т. е. 0, 1, 2,..., п, причем каждая группа состоит из особей одного возраста), так что самая старшая группа, или группа, в которой все доживающие до данного возраста животные вымирают, имеет номер п. Обозначая через xn число особей в каждой возрастной группе, получаем вектор
представляющий возрастную структуру в момент времени t.Модель описывается матричным уравнением
(9.19)которое запишем в развернутом виде:
где величины fi,(i=0,1,...,n) представляют число самок, производимых самкой i-го возраста,
р, (i = 0,1,..., п -1) – вероятность того, что самка i-го возраста доживет до возраста i+1.
Покажем, что поведение модели можно предсказать, анализируя некоторые формальные свойства матрицы А.
Во-первых, последовательно умножая уравнение (9.19) на матрицу А, легко получить более общие уравнения для численности возрастных групп к моменту времени
(9.21)Во-вторых, поскольку матрица А
квадратная с (n+1) строками и столбцами, она имеет n+1 собственных чисел (с учетом кратности) и (n+1) собственных (и присоединенных) векторов. Элементы А являются либо положительными числами, либо нулями, поэтому наибольшее (по абсолютной величине) собственное число и координаты отвечающего ему собственного вектора положительны и при этом имеют определенный экологический смысл. Проиллюстрируем это на одной из простейших моделей, предложенных Уильямсоном [54].
Исходная популяция имеет вектор, представляющий возрастную структуру а0 = (0,0,1), т. е. популяция состоит из одной самки старшего возраста. Матрица А имеет вид:
По прошествии одного временного интервала имеем
т. е. a1
= (12, 0, 0) и в популяции уже будет 12 самок младшего возраста. Повторное применение модели дает следующие результаты:
и т.д.
Главное собственное число и собственный вектор матрицы А можно найти известными методами, имея
(9.22)
или полагая –
систему линейных алгебраических уравнений
определитель которой
Следовательно, главное собственное число ?1 = 2 и собственный вектор в силу (9.23) имеет вид = (24, 4,1). Остальные собственные числа в силу (9.24) имеют вид ?2
=-1, ?3 =-1. В силу (9.23) собственный вектор имеет вид = (6,-2,1). Так как собственное число -1 двукратно, то для нахождения вектора (называемого присоединенным), решаем систему уравнений (A- ?2) =:
|
Нетрудно проверить, что система (9.25) допускает решение = (0, - 2, 2). Привлекая геометрические соображения, заключаем, что возрастная структура популяции представляется вектором в трехмерном пространстве, в котором векторы = (24,4, 2), = (6, - 2,1) и =
(0, - 2, 2) – базисные, т. е.
(9.26)
где ?0, ?0, ?0 – некоторые положительные числа (например, если = (258, 30, 17), то ?0=10, ?0=3, ?0=2).
Тогда уравнение (9.21) примет вид:
(9.27)
Так как > 0, k > ?, то при t=+k > ? популяция возрастает по экспоненциальному закону
(9.28)
Главное собственное число ?1 дает скорость, с которой возрастает размер популяции (в нашем примере за каждый временной интервал популяция удваивается), а собственный вектор определяет устойчивую возрастную структуру популяции, т. е. отношение численностей особей разных возрастных групп остается постоянным и равным 24:4:1. Нетрудно видеть, что если мы в конце каждого временного интервала будем изымать половину популяции и использовать на корм, то размер ее станет равным исходному .
Матричные модели очень удобны для расчета на ЭВМ и находят все более широкое применение, например, для анализа круговорота питательных веществ в экосистемах, в различных стохастических моделях [54] (в марковских моделях и т.д.).
Контрольные задания
1. Показать, что график логистического уравнения имеет единственную точку перегиба. Найти ее и дать биологическую интерпретацию.
2. Рассмотреть систему Вольтерра в случае . Найти отношения .
3. Построить и исследовать модель эпидемии в городе с 300-тысячным населением.
4. Исходная популяция имеет следующую возрастную структуру a0 = (0,6,12) и матрица Лесли А – следующий вид:
Найти (приближенно) численность популяции через достаточно большое число п лет и ее устойчивую возрастную структуру.
Молниезащита
Важным вопросом электробезопасности является защита от удара молний, или молниезащита.
Молния – это особый вид прохождения электрического тока через огромные воздушные промежутки, источник которого – атмосферный заряд, накопленный грозовым облаком.
Различают три типа воздействия тока молнии: прямой удар, вторичное воздействие заряда молнии и занос высоких потенциалов (напряжения) в здания. При прямом разряде молнии в здание или сооружение может произойти его механическое или термическое разрушение. Последнее проявляется в виде плавления или даже испарения материалов конструкции. Вторичное воздействие разряда молнии заключается в наведении в замкнутых токопроводящих контурах (трубопроводах, электропроводках и др.), расположенных внутри зданий, электрических токов. Эти токи могут вызвать искрение или нагрев металлических конструкций, что может стать причиной возникновения пожара или взрыва в помещениях, где используются горючие или взрывоопасные вещества. К этим же последствиям может привести и занос высоких потенциалов (напряжения) по любым металлоконструкциям, находящимся внутри зданий и сооружений под действием молнии.
Для защиты от действия молнии устраивают молниеотводы (громоотводы). Это заземленные металлические конструкции, которые воспринимают удар молнии и отводят ее ток в землю. Различают стержневые и тросовые молниеотводы. Их защитное действие основано на свойстве молний поражать наиболее высокие и хорошо заземленные металлические конструкции.
Молниеотводы характеризуются зоной защиты, которая определяется как часть пространства, защищенного от удара молнии с определенной степенью надежности. В зависимости от степени надежности зоны защиты могут быть двух типов – А и Б. Тип зоны защиты выбирают в зависимости от ожидаемого количества поражений молнией зданий и сооружений в год (N). Если величина N > 1, то принимают зону защиты типа А (степень надежности защиты в этом случае составляет не менее 99,5%). При N ? 1 принимают зону защиты типа В (степень надежности этой защиты – 95% и выше).
Рассмотрим, какую зону защиты образует стержневой отдельно стоящий молниеотвод (рис. 20.9).
Как следует из рисунка, зона защиты для данного молниеотвода представляет собой конус высотой h0 с радиусом основания на земле r0. Обычно высота молниеотвода (h) не превышает 150 м. Остальные размеры зоны в зависимости от величины (h, м) следующие (табл. 20.4):
Существуют также зависимости, позволяющие, задаваясь размерами защищаемого объекта (hx
и rx), определить величину h. Эта зависимость для зоны Б имеет вид:
(20,19)
Для молниеотводов других типов зависимости иные.
Новый подход к оценке стоимости биотических компонентов экосистем
Разрабатываемый группой В.Н. Большакова подход к оценке стоимости ОС отличается тем, что оценивается стоимость ключевых видов, составляющих экосистему. Это позволяет более или менее корректно сопоставить работу по поддержанию постоянства ОС, осуществляемую живыми компонентами экосистем, с человеческой деятельностью. Любая хозяйственная или иная деятельность, наносящая ущерб экосистемам, должна оцениваться в неких единых и общих показателях для оценки того, чего же больше получит общество от данной хозяйственной деятельности – вреда или пользы.
Методика, разработанная специалистами упомянутой группы, дает основу для оценки воздействий человека на экосистемы и позволяет в сопоставимых единицах (ими могут быть единицы мощности или денежные) оценить средообразующую функцию биосферы [3]. Следуя этой идеологии, необходимо разделять ущерб, наносимый биосфере, и ущерб, наносимый отраслям хозяйства, эксплуатирующим возобновимые природные ресурсы, при строительстве и эксплуатации промышленных объектов в других отраслях.
Авторы нового подхода обосновывают возможность использования мощности в качестве первого приближения к реальной эколого-экономической оценке биологических ресурсов. Под мощностью понимается следующее. Все живые системы обладают определенной мощностью работы по сохранению упорядоченного состояния путем откачки неупорядоченности, т. е. уменьшения энтропии внутри этих систем. Эта мощность зависит от количества солнечной энергии, которую необходимо затратить в единицу времени для поддержания состояния живых систем с низкой энтропией. Измерение этой мощности может служить одной из отправных точек для оценки стоимости живых систем. Выражение стоимости в единицах мощности легко перевести в эквивалент затрат на получение такого же количества энергии от Солнца техническими средствами.
Для иллюстрации возможности использования в качестве первого приближения к реальной эколого-экономической оценке биологических ресурсов рассмотрим схему потоков через стабильную экологическую систему, представленную четырьмя трофическими уровнями (рис. 6.1).
Рис. 6.1. Схема потоков энергии через четырехуровневую экосистему:
Р – продуценты, Сl – консументы 1 порядка, СII – консументы второго порядка,
RED – редуценты, Ak и Rk - входящие и исходящие потоки энергии
для k-го трофического уровня соответственно (k = 1,2, ...)
Каждый трофический уровень представлен совокупностью популяций различных видов. Эти популяции играют разную роль в общем круговороте вещества и энергии (основную или вспомогательную), при этом стационарное состояние экосистемы одновременно оказывается динамическим – расход свободной энергии при протекании необратимых процессов компенсируется ее притоком от Солнца.
Условие стационарности согласно первому началу термодинамики (закону сохранения энергии) соблюдается, если
. (6.1)
Поскольку Rk – затраты энергии на поддержание состояния в единицу времени (мощность), то интегральную оценку экосистемы можно получить сложением мощностей основных ее компонентов – их сумма является оценкой того количества энергии, которая потребляется в единицу времени.
Используя этот подход, можно оценить энергетическую стоимость различных биологических объектов. Максимально упрощенная оценка имеет вид:
(6.2)
где – стоимость k-гo вида (кВт/т и Дж/т в год), Qk – энергетическое содержание тканей (кДж), – время оборота энергии тканей (биомассы), rk – интенсивность дыхания поддерживания (кВт/г или Дж/г в год), pj – коэффициент усвоения энергии при переходе с трофического уровня j -1 на уровень j.
Исходным материалом для оценки стоимости (6.2) должен служить список видов (объектов), компонующих данную экосистему с приписанными им значениями Qk (энергетическое содержание тканей одной особи или единицы биомассы), (скорость оборота биомассы), Rk
(энергия самоподдержания) и рk (коэффициент, отвечающий трофическому уровню данного вида).
Коротко остановимся на методике расчета параметров уравнения (6.2). При расчетах энергетической стоимости особей оценка Qk получается в результате умножения теплоемкости единицы массы тканей на общую массу особи:
Qk=qkWk, (6.3)
где qk
– теплоемкость, Wk
– масса тела особи.
В литературе накоплен большой материал по теплоемкостям (см., например, [27]).
Скорость оборота обратно пропорциональна среднему времени регенерации, которую грубо можно считать равной одной трети максимального времени жизни.
Возможность поддержания Rk примерно вдвое превышает уровень основного обмена Y. В свою очередь основной обмен теплокровных животных зависит от массы тела и эта зависимость хорошо описывается уравнениями вида
Y = aWb, (6.4)
где коэффициенты a и b
найдены для большинства групп животных (например, для млекопитающих: а =1,855 и b=0,74).
Для растительных объектов, например для древесины, энергию поддержания на 1 м3 запаса древесины можно оценить по формуле
Rk(год)=0,417рq, (6.5)
где р – условная плотность древесины,
q – теплота сгорания на единицу массы.
Теплота сгорания q
примерно одинакова для различных пород и колеблется от 19,6 до 21,4 кДж/г, составляя в среднем 20 кДж/г.
Таким образом, чтобы оценить стоимость биологических ресурсов по упрощенной методике (6.2), необходимо знать:
· энергетическое содержание одного грамма вещества;
· среднюю массу тела одной особи (для животных);
· дыхание поддержания (энергия существования);
· трофический уровень, пищевую специализацию и коэффициент утилизации энергии);
· плотность популяции или плотность биомассы (чистой первичной или вторичной продукции).
Для того чтобы оценить стоимость территории, необходимо располагать данными по плотности всех основных групп ресурсов.
Подход к назначению цены за единицу энергетического эквивалента стоимости строится на следующей основе. Способом, сопоставимым с утилизацией солнечной энергии автотрофными организмами, может быть наиболее экологически чистый способ производства энергии человеком – при помощи солнечных электроустановок.
Этот способ сейчас весьма дорог. Так, в США цена фотоэлектрического модуля в 1986 г. составила 5,25 долл. за 1 Вт. Эту цену предлагается использовать в качестве первого приближения при расчетах стоимости производства биотических компонентов экосистем. Оценки величин ущербов будут снижаться со снижением стоимости производства энергии таким способом. По-видимому, это будет закономерным процессом, поскольку развитие экологически чистой энергетики, не эксплуатирующей ресурсы биосферы, должно стать одним из главных критериев и свидетельств изменений взглядов общества в целом на взаимоотношения в системе «человек–окружающая среда».
Ущерб рассчитывается перемножением стоимости биотических компонентов на единицу территории как временной лаг. Критерием для установления лага может служить время, необходимое для восстановления нарушенной экосистемы до первоначального уровня. Так, для многих лесных и тундровых экосистем приемлемым будет лаг, равный 100 годам.
В качестве тестового примера рассчитана стоимость участка тундры на полуострове Ямал в районе Борваненковского газоконденсатного месторождения. Стоимость 1 га данной территории оказалась равной 45 930 долл. США. Соответственно ущерб, наносимый безвозвратным изъятием данной территории, с учетом временного лага, равного 100 годам, составит 4 593 000 долл. США на 1 га.
Общее представление о системном анализе
Вопреки представлениям многих экологов, системный анализ не есть какой-то математический метод и даже не группа математических методов. Это стратегия научного поиска, использующая математические методы и модели, но в рамках систематизированного научного подхода к решению сложных проблем. По существу системный анализ таким образом организует наши знания об объекте, что облегчается выбор нужной стратегии или предсказания результатов той или иной стратегии для принятия определенного решения. При использовании системного анализа в решении практических задач можно, следуя Дж. Джефферсу [12], выделить семь этапов (рис. 12.1).